
Progress DataDirect for
ODBC Drivers
Reference

December 2020

Copyright

© 2021 Progress Software Corporation and/or one of its subsidiaries or affiliates. All
rights reserved.
These materials and all Progress® software products are copyrighted and all rights are reserved by Progress
Software Corporation. The information in these materials is subject to change without notice, and Progress
Software Corporation assumes no responsibility for any errors that may appear therein. The references in
these materials to specific platforms supported are subject to change.

Chef, Chef (and design), Chef Infra, Code Can (and design), Compliance at Velocity, Corticon, DataDirect (and
design), DataDirect Cloud, DataDirect Connect, DataDirect Connect64, DataDirect XML Converters, DataDirect
XQuery, DataRPM, Defrag This, Deliver More Than Expected, DevReach (and design), Icenium, Inspec,
Ipswitch, iMacros, Kendo UI, Kinvey, MessageWay, MOVEit, NativeChat, NativeScript, OpenEdge, Powered
by Chef, Powered by Progress, Progress, Progress Software Developers Network, SequeLink, Sitefinity (and
Design), Sitefinity, Sitefinity (and design), SpeedScript, Stylus Studio, Stylized Design (Arrow/3D Box logo),
Styleized Design (C Chef logo), Stylized Design of Samurai, TeamPulse, Telerik, Telerik (and design), Test
Studio, WebSpeed, WhatsConfigured, WhatsConnected, WhatsUp, and WS_FTP are registered trademarks
of Progress Software Corporation or one of its affiliates or subsidiaries in the U.S. and/or other countries.

Analytics360, AppServer, BusinessEdge, Chef Automate, Chef Compliance, Chef Desktop, Chef Habitat, Chef
WorkStation, Corticon.js, Corticon Rules, Data Access, DataDirect Autonomous REST Connector, DataDirect
Spy, DevCraft, Fiddler, Fiddler Everywhere, FiddlerCap, FiddlerCore, FiddlerScript, Hybrid Data Pipeline, iMail,
JustAssembly, JustDecompile, JustMock, KendoReact, NativeScript Sidekick, OpenAccess, PASOE, Pro2,
ProDataSet, Progress Results, Progress Software, ProVision, PSE Pro, Push Jobs, SafeSpaceVR, Sitefinity
Cloud, Sitefinity CMS, Sitefinity Digital Experience Cloud, Sitefinity Feather, Sitefinity Insight, Sitefinity Thunder,
SmartBrowser, SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog,
SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Supermarket,
SupportLink, Unite UX, and WebClient are trademarks or service marks of Progress Software Corporation
and/or its subsidiaries or affiliates in the U.S. and other countries. Java is a registered trademark of Oracle
and/or its affiliates. Any other marks contained herein may be trademarks of their respective owners.

Updated: 2021/01/08

3Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Progress DataDirect for ODBC Drivers: Reference: Version November 20204

Copyright

Table of Contents

Welcome to the Progress DataDirect for ODBC Drivers Reference9
What is ODBC?..9

How does it work?...10

Why do application developers need ODBC?..11

Troubleshooting...13
Diagnostic tools..13

ODBC trace...13

Test loading tool...17

ODBC Test...17

iODBC Demo and iODBC Test..18

Logging for Java components..18

The demoodbc Application..21

The example application..22

Enabling debug record mode...22

Other tools...23

Error messages..23

Troubleshooting issues...25

Setup/connection issues..25

Interoperability issues..26

Performance issues...28

Failover...29
Connection failover...30

Extended connection failover..31

Select connection failover...32

Guidelines for primary and alternate servers...33

Using client load balancing ..34

Using connection retry..34

Summary of failover-related options...35

A connection string example..36

An odbc.ini file example...36

Client information..39
How databases store client information..40

Storing client information..40

5Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Contents

Code page values..43
IANAAppCodePage values ..43

IBM to IANA code page values...48

Teradata code page values...50

ODBC API and scalar functions...51
API functions..51

Scalar functions..53

String functions..55

Numeric functions..57

Date and time functions...58

System functions...60

Internationalization, localization, and Unicode...61
Internationalization and Localization..61

Locale..62

Language...62

Country..62

Variant..63

Unicode character encoding...63

Background..63

Unicode support in databases...64

Unicode support in ODBC...64

Unicode and non-Unicode ODBC drivers...65

Function calls...65

Data...68

Default Unicode mapping...69

Driver Manager and Unicode encoding on UNIX/Linux..70

References...71

Character encoding in the odbc.ini and odbcinst.ini files..71

Designing ODBC applications for performance optimization.................73
Using catalog functions..74

Caching information to minimize the use of catalog functions...74

Avoiding search patterns...75

Using a dummy query to determine table characteristics..75

Retrieving data...76

Retrieving long data...76

Reducing the size of data retrieved...76

Using bound columns..77

Using SQLExtendedFetch instead of SQLFetch..77

Progress DataDirect for ODBC Drivers: Reference: Version November 20206

Contents

Choosing the right data type..78

Selecting ODBC functions..78

Using SQLPrepare/SQLExecute and SQLExecDirect...78

Using arrays of parameters..79

Using the cursor library..80

Managing connections and updates...80

Managing connections...80

Managing commits in transactions..81

Choosing the right transaction model..81

Using positioned updates and deletes...81

Using SQLSpecialColumns...81

Using indexes...83
Introduction...83

Improving row selection performance...84

Indexing multiple fields...84

Deciding which indexes to create...85

Improving join performance..86

Locking and isolation levels...87
Locking...87

Isolation levels..88

Locking modes and levels..89

SSL encryption cipher suites...91

DataDirect Bulk Load...97
DataDirect Bulk Load functions..97

Utility functions...98

GetBulkDiagRec and GetBulkDiagRecW..98

Export, validate, and load functions..100

ExportTableToFile and ExportTableToFileW..100

ValidateTableFromFile and ValidateTableFromFileW...103

LoadTableFromFile and LoadTableFromFileW..105

Using the TableName parameter with the Salesforce driver..108

SetBulkOperation (Salesforce driver only)...110

GetBulkOperation (Salesforce driver only) ...111

DataDirect Bulk Load statement attributes...113

SQL_BULK_EXPORT_PARAMS...113

SQL_BULK_EXPORT..113

7Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Contents

DataDirect connection pooling...115
Creating a connection pool...116

Adding connections to a pool...116

Removing connections from a pool..116

Handling dead connections in a pool..117

Connection pool statistics...118

Summary of pooling-related options...118

Threading..119

WorkAround options..121

Progress DataDirect for ODBC Drivers: Reference: Version November 20208

Contents

1
Welcome to the Progress DataDirect for
ODBC Drivers Reference

This guide provides general information for Progress DataDirect for ODBC drivers, including troubleshooting
tips, descriptions of advanced features, and optimizing ODBC applications. The content of this guide applies
to all ODBC drivers unless otherwise noted.

The reference acts as a compliment to the driver user's guides, which provide detailed instructions on configuring
and using drivers. For complete driver documentation sets, visit the Progress Documentation Hub:
https://docs.progress.com/bundle/datadirect-connectors/page/DataDirect-Connectors-by-data-source.html.

Note: This reference refers the reader to Web pages using URLs for more information about specific topics,
including Web URLs not maintained by Progress DataDirect. Because it is the nature of Web content to change
frequently, Progress DataDirect can guarantee only that the URLs in this reference were correct at the time of
publishing.

For details, see the following topics:

• What is ODBC?

What is ODBC?
The Open Database Connectivity (ODBC) interface by Microsoft allows applications to access data in database
management systems (DBMS) using SQL as a standard for accessing the data. ODBC permits maximum
interoperability, which means a single application can access different DBMS. Application end users can then
add ODBC database drivers to link the application to their choice of DBMS.

9Progress DataDirect for ODBC Drivers: Reference: Version November 2020

https://docs.progress.com/bundle/datadirect-connectors/page/DataDirect-Connectors-by-data-source.html

The ODBC interface defines:

• A library of ODBC function calls of two types:

• Extended functions that support additional functionality, including scrollable cursors

• Core functions that are based on the X/Open and SQL Access Group Call Level Interface specification

• SQL syntax based on the X/Open and SQL Access Group SQL CAE specification (1992)

• A standard set of error codes

• A standard way to connect and logon to a DBMS

• A standard representation for data types

The ODBC solution for accessing data led to ODBC database drivers, which are dynamic-link libraries on
Windows and shared objects on UNIX and Linux. These drivers allow an application to gain access to one or
more data sources. ODBC provides a standard interface to allow application developers and vendors of database
drivers to exchange data between applications and data sources.

How does it work?

The ODBC architecture has four components:

• An application, which processes and calls ODBC functions to submit SQL statements and retrieve results

• A Driver Manager, which loads drivers for the application

• A driver, which processes ODBC function calls, submits SQL requests to a specific data source, and returns
results to the application

• A data source, which consists of the data to access and its associated operating system, DBMS, and network
platform (if any) used to access the DBMS

The following figure shows the relationship among the four components:

Progress DataDirect for ODBC Drivers: Reference: Version November 202010

Chapter 1: Welcome to the Progress DataDirect for ODBC Drivers Reference

Why do application developers need ODBC?

Using ODBC, you, as an application developer can develop, compile, and ship an application without targeting
a specific DBMS. In this scenario, you do not need to use embedded SQL; therefore, you do not need to
recompile the application for each new environment.

11Progress DataDirect for ODBC Drivers: Reference: Version November 2020

What is ODBC?

Progress DataDirect for ODBC Drivers: Reference: Version November 202012

Chapter 1: Welcome to the Progress DataDirect for ODBC Drivers Reference

2
Troubleshooting

This part guides you through troubleshooting Progress DataDirect for ODBC drivers. It provides you with
solutions to common problems and documents error messages that you may receive.

For details, see the following topics:

• Diagnostic tools

• Error messages

• Troubleshooting issues

Diagnostic tools
This chapter discusses the diagnostic tools you use when configuring and troubleshooting your ODBC
environment.

ODBC trace

ODBC tracing allows you to trace calls to ODBC drivers and create a log of the traces.

Creating a trace Log
Creating a trace log is particularly useful when you are troubleshooting an issue.

To create a trace log:

13Progress DataDirect for ODBC Drivers: Reference: Version November 2020

1. Enable tracing (see "Enabling tracing" for more information).

2. Start the ODBC application and reproduce the issue.

3. Stop the application and turn off tracing.

4. Open the log file in a text editor and review the output to help you debug the problem.

For a complete explanation of tracing, refer to the following Progress DataDirect Knowledgebase document:

http://knowledgebase.progress.com/articles/Article/3049

See also
Enabling tracing on page 14

Enabling tracing
Progress DataDirect provides a tracing library that is enhanced to operate more efficiently, especially in
production environments, where log files can rapidly grow in size. The DataDirect tracing library allows you to
control the size and number of log files.

On Windows, you can enable tracing through the Tracing tab of the ODBC Data Source Administrator.

On UNIX and Linux, you can enable tracing by directly modifying the [ODBC] section in the system information
(odbc.ini) file.

On macOS, you can also enable tracing through the Tracing tab of the iODBC Data Source Administrator.

Windows ODBC Administrator

On Windows, open the ODBC Data Source Administrator and select the Tracing tab. To specify the path and
name of the trace log file, type the path and name in the Log File Path field or click Browse to select a log file.
If no location is specified, the trace log resides in the working directory of the application you are using.

Click Select DLL in the Custom Trace DLL pane to select the DataDirect enhanced tracing library,
xxtrcyy.dll, where xx represents either iv (32-bit version) or dd (64-bit version), and yy represents the
driver level number, for example, ivtrc28.dll.The library is installed in the \Windows\System32 directory.

After making changes on the Tracing tab, click Apply for them to take effect.

Enable tracing by clicking Start Tracing Now. Tracing continues until you disable it by clicking Stop Tracing
Now. Be sure to turn off tracing when you are finished reproducing the issue because tracing decreases the
performance of your ODBC application.

When tracing is enabled, information is written to the following trace log files:

• Trace log file (trace_filename.log) in the specified directory.

• Trace information log file (trace_filenameINFO.log). This file is created in the same directory as the
trace log file and logs the following SQLGetInfo information:

• SQL_DBMS_NAME

• SQL_DBMS_VER

• SQL_DRIVER_NAME

• SQL_DRIVER_VER

• SQL_DEFAULT_TXN_ISOLATION

Progress DataDirect for ODBC Drivers: Reference: Version November 202014

Chapter 2: Troubleshooting

http://knowledgebase.progress.com/articles/Article/3049

The DataDirect enhanced tracing library allows you to control the size and number of log files. The file size
limit of the log file (in KB) is specified by the Windows Registry key ODBCTraceMaxFileSize. Once the size
limit is reached, a new log file is created and logging continues in the new file until it reaches its file size limit,
after which another log file is created, and so on.

The maximum number of files that can be created is specified by the Registry key ODBCTraceMaxNumFiles.
Once the maximum number of log files is created, tracing reopens the first file in the sequence, deletes the
content, and continues logging in that file until the file size limit is reached, after which it repeats the process
with the next file in the sequence. Subsequent files are named by appending sequential numbers, starting at
1 and incrementing by 1, to the end of the original file name, for example, SQL1.LOG, SQL2.LOG, and so on.

The default values of ODBCTraceMaxFileSize and ODBCTraceMaxNumFiles are 102400 KB and 10,
respectively. To change these values, add or modify the keys in the following Windows Registry section:

[HKEY_CURRENT_USER\SOFTWARE\ODBC\ODBC.INI\ODBC]

Warning: Do not edit the Registry unless you are an experienced user. Consult your system administrator if
you have not edited the Registry before.

Edit each key using your values and close the Registry.

System information (odbc.ini) file

The [ODBC] section of the system information file includes several keywords that control tracing:

Trace=[0 | 1]
TraceFile=trace_filename
TraceDll=ODBCHOME/lib/xxtrcyy.zz
ODBCTraceMaxFileSize=file_size
ODBCTraceMaxNumFiles=file_number
TraceOptions=0

where:

Trace=[0 | 1]

Allows you to enable tracing by setting the value of Trace to 1. Disable tracing by setting the value
to 0 (the default). Tracing continues until you disable it. Be sure to turn off tracing when you are
finished reproducing the issue because tracing decreases the performance of your ODBC application.

TraceFile=trace_filename

Specifies the path and name of the trace log file. If no path is specified, the trace log resides in the
working directory of the application you are using.

TraceDll=ODBCHOME/lib/xxtrcyy.zz

Specifies the library to use for tracing. The driver installation includes a DataDirect enhanced library
to perform tracing, xxtrcyy.zz, where xx represents either iv (32-bit version) or dd (64-bit version),
yy represents the driver level number, and zz represents either so or sl. For example, ivtrc28.so
is the 32-bit version of the library. To use a custom shared library instead, enter the path and name
of the library as the value for the TraceDll keyword.

The DataDirect enhanced tracing library allows you to control the size and number of log files with
the ODBCTraceMaxFileSize and ODBCTraceMaxNumFiles keywords.

15Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Diagnostic tools

ODBCTraceMaxFileSize=file_size

The ODBCTraceMaxFileSize keyword specifies the file size limit (in KB) of the log file. Once this file
size limit is reached, a new log file is created and logging continues in the new file until it reaches
the file size limit, after which another log file is created, and so on. The default is 102400.

ODBCTraceMaxNumFiles=file_number

The ODBCTraceMaxNumFiles keyword specifies the maximum number of log files that can be
created. The default is 10. Once the maximum number of log files is created, tracing reopens the
first file in the sequence, deletes the content, and continues logging in that file until the file size limit
is reached, after which it repeats the process with the next file in the sequence. Subsequent files
are named by appending sequential numbers, starting at 1 and incrementing by 1, to the end of the
original file name, for example, odbctrace1.out, odbctrace2.out, and so on.

TraceOptions=[0 | 1 | 2 | 3]

The ODBCTraceOptions keyword specifies whether to print the current timestamp, parent process
ID, process ID, and thread ID for all ODBC functions to the output file. The default is 0.

• If set to 0, the driver uses standard ODBC tracing.

• If set to 1, the log file includes a timestamp on ENTRY and EXIT of each ODBC function.

• If set to 2, the log file prints a header on every line. By default, the header includes the parent
process ID and process ID.

• If set to 3, both TraceOptions=1 and TraceOptions=2 are enabled. The header includes a
timestamp as well as a parent process ID and process ID.

Example

In the following example of trace settings, tracing has been enabled, the name of the log file is
odbctrace.out, the library for tracing is ivtrc28.so, the maximum size of the log file is 51200
KB, and the maximum number of log files is 8. Timestamp and other information is included in
odbctrace.out.

Trace=1
TraceFile=ODBCHOME/lib/odbctrace.out
TraceDll=ODBCHOME/lib/ivtrc28.so
ODBCTraceMaxFileSize=51200
ODBCTraceMaxNumFiles=8
TraceOptions=3

macOS iODBC Administrator

On macOS, you can enable tracing through the Tracing tab of the iODBC Data Source Administrator.

To specify the path and name of the trace log file, type the path and name in the Log file path field or click
Browse to select a log file. If no location is specified, the trace log resides in the working directory of the
application you are using.

The iODBC Data Source Administrator ships with a trace library that is enabled by default. If you want to use
a custom library instead, type the path and name of the library in the Custom trace library field or click Browse
to select the library.

Progress DataDirect for ODBC Drivers: Reference: Version November 202016

Chapter 2: Troubleshooting

To enable tracing, indicate the frequency of tracing for the "When to trace" option on the Trace tab. If you select
All the time, tracing continues until you disable it. Be sure to turn off tracing when you are finished reproducing
the issue because tracing decreases the performance of your ODBC application.

After making changes on the Tracing tab, click Apply for them to take effect.

The DataDirect enhanced tracing library gives you more control over tracing. See "System Information (odbc.ini)
File" for a complete discussion of how to configure enhanced tracing.

See also
System information (odbc.ini) file on page 15

Test loading tool

Before using the test loading tool, be sure that your environment variables are set correctly. Refer to "Environment
variable" in the user's guide for your driver for details.

The ivtestlib (32-bit drivers) and ddtestlib (64-bit drivers) test loading tools are provided to test load drivers and
help diagnose configuration problems in the UNIX, Linux, and macOS environments, such as environment
variables not correctly set or missing database client components.This tool is installed in the /bin subdirectory
in the product installation directory. It attempts to load a specified ODBC driver and prints out all available error
information if the load fails.

For example, if the drivers are installed in /opt/odbc/lib, the following command attempts to load the 32-bit
driver on Solaris, where xx represents the version number of the driver:

ivtestlib /opt/odbc/lib/ivoraxx.so

Note: On the HP-UX version, the full path to the driver must be specified for the tool. For other platforms, the
full path is not required.

If the load is successful, the tool returns a success message along with the version string of the driver. If the
driver cannot be loaded, the tool returns an error message explaining why.

For version string details, refer to "Version string information" in the user's guide for your driver.

ODBC Test

On Windows, Microsoft® ships with its ODBC SDK an ODBC-enabled application, named ODBC Test, that you
can use to test ODBC drivers and the ODBC Driver Manager. ODBC 3.52 includes both ANSI and
Unicode-enabled versions of ODBC Test.

To use ODBC Test, you must understand the ODBC API, the C language, and SQL. For more information
about ODBC Test, refer to the Microsoft ODBC SDK Guide.

17Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Diagnostic tools

iODBC Demo and iODBC Test

On macOS, the iODBC Driver Manager includes two sample applications, iODBC Demo and iODBC Test, that
you can use to test ODBC drivers and the ODBC Driver Manager. iODBC Demo supports a graphical user
interface to run tests, while iODBC Test employs a command-line interface. Both applications allow you to
execute SQL statements against your environment, providing a quick means to test your connections,
configurations, and setup. ANSI and Unicode-enabled versions of both applications are installed with the Driver
Manager.

Logging for Java components

The following Progress DataDirect drivers for ODBC include a flexible and comprehensive logging mechanism
for internal Java components.

• Aha!

• Apache Cassandra

• Autonomous REST Connector

• GitHub

• Google Analytics

• Google BigQuery

• HubSpot

• Microsoft Dynamics 365

• Microsoft SharePoint

• MongoDB

• Oracle Service Cloud

• Salesforce

• SAP S/4HANA

• TeamCity

This logging mechanism allows logging to be incorporated seamlessly with the logging of your application or
enabled and configured independently of the application. The logging mechanism can be instrumental in
investigating and diagnosing issues. It also provides valuable insight into the type and number of operations
requested by the application from the driver and requested by the driver from the data source.This information
can help you tune and optimize your application.

Loggers and logging levels
The Java Logging API is used to configure and control the loggers used by the driver. The Java Logging API
is built into the JVM.

Progress DataDirect for ODBC Drivers: Reference: Version November 202018

Chapter 2: Troubleshooting

The Java Logging API allows applications or components to define one or more named loggers. Messages
written to the loggers can be given different levels of importance. For example, warnings that occur in the driver
can be written to a logger at the WARNING level, while progress or flow information can be written to a logger
at the INFO or FINER level. Each logger used by the driver can be configured independently.The configuration
for a logger includes what level of log messages are written, the location to which they are written, and the
format of the log message.

The Java Logging API defines the following levels:

• SEVERE

• CONFIG

• FINE

• FINER

• FINEST

• INFO

• WARNING

Note: Log messages logged by the driver only use the CONFIG, FINE, FINER, and FINEST logging levels.

Setting the log threshold of a logger to a particular level causes the logger to write log messages of that level
and higher to the log. For example, if the threshold is set to FINE, the logger writes messages of levels FINE,
CONFIG, and SEVERE to its log. Messages of level FINER or FINEST are not written to the log.

The driver exposes loggers for the following functional areas:

• Driver to SQL Communication

• SQL Engine

• Web service adapter

Driver to SQL communication logger

Name
datadirect.cloud.drivercommunication

Description
Logs all calls made by the driver to the SQL Engine and the responses from the SQL Engine back to the driver.

Message Levels
CONFIG - Errors and Warnings encountered by the communication protocol are logged at this level.

FINER - The message type and arguments for requests and responses sent between the driver and SQL
Engine are logged at this level. Data transferred between the driver and SQL Engine is not logged.

FINEST - Data transferred between the driver and SQL Engine is logged at this level.

Default
OFF

19Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Diagnostic tools

SQL engine logger

Name
datadirect.cloud.sql.level

Description
Logs the operations that the SQL engine performs while executing a query. Operations include preparing a
statement to be executed, executing the statement, and fetching the data, if needed. These are internal
operations that do not necessarily directly correlate with Web service calls made to the remote data source.

Message Levels
CONFIG - Any errors or warnings detected by the SQL engine are written at this level.

FINE - In addition to the same information logged by the CONFIG level, SQL engine operations are logged at
this level. In particular, the SQL statement that is being executed is written at this level.

FINER - In addition to the same information logged by the CONFIG and FINE levels, data sent or received in
the process of performing an operation is written at this level.

Wire protocol adapter logger

Name
datadirect.cloud.adapter.level

Description
Logs the calls the driver makes to the remote data source and the responses it receives from the remote data
source.

Message Levels
CONFIG - Any errors or warnings detected by the wire protocol adapter are written at this level.

FINE - In addition to the information logged by the CONFIG level, information about calls made by the wire
protocol adapter and responses received by the wire protocol adapter are written at this level. In particular, the
calls made to execute the query and the calls to fetch or send the data are logged. The log entries for the calls
to execute the query include the API-specific query being executed. The actual data sent or fetched is not
written at this level.

FINER - In addition to the information logged by the CONFIG and FINE levels, this level provides additional
information.

FINEST - In addition to the information logged by the CONFIG, FINE, and FINER levels, data associated with
the calls made by the wire protocol adapter is written.

Configuring logging
You can configure logging using a standard Java properties file in either of the following ways:

• Using the properties file that is shipped with your JVM. See "Using the JVM" for details.

• Using the driver. See "Using the driver" for details.

Progress DataDirect for ODBC Drivers: Reference: Version November 202020

Chapter 2: Troubleshooting

Using the JVM

If you want to configure logging using the properties file that is shipped with your JVM, use a text editor to
modify the properties file in your JVM. Typically, this file is named logging.properties and is located in
the JRE/lib subdirectory of your JVM. The JRE looks for this file when it is loading.

You can also specify which properties file to use by setting the java.util.logging.config.file system
property. At a command prompt, enter:

java -Djava.util.logging.config.file=properties_file

where properties_file is the name of the properties file you want to load.

Using the driver

If you want to configure logging using the driver, you can use either of the following approaches:

• Use a single properties file for all connections.

• Use a different properties file for each schema map. For example, if you have two schema maps
(C:\data\schemamaps1\ and C:\data\schemamaps2\, for example), you can load one properties file
for the test1map.config schema map and load another properties file for the test2map.config schema
map.

By default, the driver looks for the file named ddlogging.properties in the current working directory to
load for all connections. If the driver is operating in Server mode, the driver uses the ddlogging.properties
file that is stored in the application working directory.

If a properties file is specified for the LogConfigFile connection option, the driver uses the following process to
determine which file to load:

1. The driver looks for the file specified by the LogConfigFile connection option.

2. If the driver cannot find the file in Step 1 on page 21, it looks for a properties file named
user_name.logging.properties in the application working directory, where user_name is your user
ID used to connect to the REST service.

3. If the driver cannot find the file in Step 2 on page 21, it looks for a properties file named ddlog.properties
in the current working directory.

4. If the driver cannot find the file in Step 3 on page 21, it abandons its attempt to load a properties file.

If any of these files exist, but the logging initialization fails for some reason while using that file, the driver writes
a warning to the standard output (System.out), specifying the name of the properties file being used.

A sample properties filenamed ddlogging.properties is installed in the install_dir\samples
subdirectory of your product installation directory, where install_dir is your product installation directory.

The demoodbc Application

DataDirect provides a simple C application, named demoodbc, that is useful for:

• Executing SELECT * FROM emp, where emp is a database table.The scripts for building the emp database
tables (one for each supported database) are in the demo subdirectory in the product installation directory.

• Testing database connections.

• Creating reproducibles.

• Persisting data to an XML data file.

21Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Diagnostic tools

The demoodbc application is installed in the /samples/demo subdirectory in the product installation directory.
Refer to demoodbc.txt or demoodbc64.txt in the demo directory for an explanation of how to build and use this
application.

The example application

Progress DataDirect provides a simple C application, named example, that is useful for:

• Executing any type of SQL statement

• Testing database connections

• Testing SQL statements

• Verifying your database environment

The example application is installed in the /samples/example subdirectory in the product installation directory.
Refer to example.txt or example64.txt in the example directory for an explanation of how to build and
use this application.

Enabling debug record mode

Supported by the following drivers:

• Aha!

• Autonomous REST Connector

• GitHub

• Google Analytics

• HubSpot

• TeamCity

The drivers supports a debug record mode that provides a method for troubleshooting issues that occur when
accessing data on a REST service. When Debug Record Mode is enabled, the driver captures and records
server requests and responses to a set of files stored in a designated location. Technical Support can then
use these files to analyze and reproduce the issue without requiring access to your private data source.

To generate debug record files using the Configuration Manager dialog:

1. On the Diagnostics tab, using the Debug Folder field, specify the location where you want the driver to
generate the files used to record server requests and responses.

2. Start the ODBC application and reproduce the issue.

3. Stop the application.

To generate debug record files using the Setup dialog (Windows):

1. On the Advanced tab, check the Record box in the Debug Record section.

2. Click the Select... button associated with the Debug Folder field. The Browse For Folder dialog opens.

3. From the Browse For Folder dialog, select or create the location you want the driver to generate the files
used to record server requests and responses; then, click OK.

Progress DataDirect for ODBC Drivers: Reference: Version November 202022

Chapter 2: Troubleshooting

4. Start the ODBC application and reproduce the issue.

5. Stop the application.

To generate debug record files (non-GUI):

1. Using the DebugRecord connection option, specify the location where you want the driver to generate the
files used to record server requests and responses.

2. Start the ODBC application and reproduce the issue.

3. Stop the application.

Results: The driver generates a set of files containing the server requests and responses that occurred during
the session.

Contact Technical Support for assistance analyzing the files and reproducing the issue.

Important: Debug record files may capture security-related headers, such as auth or token headers. Before
sending Technical Support debug files, review the content to remove any confidential information that may
have been recorded.

What to do next: After generating the debug files, you can remove the location specified for the Debug
Record/Debug Folder (DebugRecord) option or, if using the Setup dialog, deselect the Record check box. If
you do not remove this value, the driver will overwrite debug files in the specified location the next time you
start the application.

Other tools

The Progress DataDirect Support Web site provides other diagnostic tools that you can download to assist you
with troubleshooting.These tools are not shipped with the product. Refer to the Progress DataDirect Web page:

https://www.progress.com/support/evaluation/download-resources/download-tools

Progress DataDirect also provides a knowledgebase that is useful in troubleshooting problems. Refer to the
Progress DataDirect Knowledgebase page:

http://progresscustomersupport-survey.force.com/ConnectKB

Error messages
Error messages can be generated from:

• ODBC driver

• Database system

• ODBC driver manager

An error reported on an ODBC driver has the following format:

[vendor] [ODBC_component] message

where ODBC_component is the component in which the error occurred. For example, an error message from
the Progress DataDirect for ODBC for Oracle Wire Protocol driver would look like this:

[DataDirect] [ODBC Oracle Wire Protocol Driver] Invalid precision specified.

23Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Error messages

https://www.progress.com/support/evaluation/download-resources/download-tools
http://progresscustomersupport-survey.force.com/ConnectKB

If you receive this type of error, check the last ODBC call made by your application for possible problems or
contact your ODBC application vendor.

An error that occurs in the data source includes the data store name, in the following format:

[vendor] [ODBC_component] [data_store] message

With this type of message, ODBC_component is the component that received the error specified by the data
store. For example, you may receive the following message from an Oracle database:

[DataDirect] [ODBC Oracle Wire Protocol Driver] [Oracle] ORA-0919: specified length too
 long for CHAR column

This type of error is generated by the database system. Check your database system documentation for more
information or consult your database administrator.

On Windows, the Microsoft Driver Manager is a DLL that establishes connections with drivers, submits requests
to drivers, and returns results to applications. An error that occurs in the Driver Manager has the following
format:

[vendor] [ODBC XXX] message

For example, an error from the Microsoft Driver Manager might look like this:

[Microsoft] [ODBC Driver Manager] Driver does not support this function

If you receive this type of error, consult the Programmer’s Reference for the Microsoft ODBC Software
Development Kit available from Microsoft.

On UNIX and Linux, the Driver Manager is provided by Progress DataDirect. For example, an error from the
DataDirect Driver Manager might look like this:

[DataDirect][ODBC lib] String data code page conversion failed.

UNIX, Linux, and macOS error handling follows the X/Open XPG3 messaging catalog system. Localized error
messages are stored in the subdirectory:

locale/localized_territory_directory/LC_MESSAGES

where localized_territory_directory depends on your language.

For instance, German localization files are stored in locale/de/LC_MESSAGES, where de is the locale for
German.

If localized error messages are not available for your locale, then they will contain message numbers instead
of text. For example:

[DataDirect] [ODBC 20101 driver] 30040

Progress DataDirect for ODBC Drivers: Reference: Version November 202024

Chapter 2: Troubleshooting

On macOS, the iODBC Driver Manager establishes connections with drivers, submits requests to drivers, and
returns results to applications. An error that occurs in the Driver Manager has the following format:

[vendor] [Driver Manager] message

For example, an error from the Microsoft Driver Manager might look like this:

[iODBC] [Driver Manager] Specified driver could not be loaded

If you receive this type of error, consult the iODBC documentation at http://www.iodbc.org/.

UNIX, Linux, and macOS error handling follows the X/Open XPG3 messaging catalog system. Localized error
messages are stored in the subdirectory:

locale/localized_territory_directory/LC_MESSAGES

where localized_territory_directory depends on your language.

For instance, German localization files are stored in locale/de/LC_MESSAGES, where de is the locale for
German.

If localized error messages are not available for your locale, then they will contain message numbers instead
of text. For example:

[DataDirect] [ODBC 20101 driver] 30040

Troubleshooting issues
If you are having an issue while using your driver, first determine the type of issue that you are encountering:

• Setup/connection

• Interoperability (ODBC application, ODBC driver, ODBC Driver Manager, or data source)

• Performance

This chapter describes these three types of issues, provides some typical causes of the issues, lists some
diagnostic tools that are useful to troubleshoot the issues, and, in some cases, explains possible actions you
can take to resolve the issues.

Setup/connection issues

You are experiencing a setup/connection issue if you are encountering an error or hang while you are trying
to make a database connection with the ODBC driver or are trying to configure the ODBC driver.

Some common errors that are returned by the ODBC driver if you are experiencing a setup/connection issue
include:

• Specified driver could not be loaded.

• Data source name not found and no default driver specified.

25Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Troubleshooting issues

http://www.iodbc.org/

• Cannot open shared library: libodbc.so.

• Unable to connect to destination.

• Invalid username/password; logon denied.

Troubleshooting the issue
Some common reasons that setup/connection issues occur are:

• On Windows, UNIX, and Linux, the library path environment variable is not set correctly.

HP-UX ONLY:

• When setting the library path environment variable on HP-UX operating systems, specifying the parent
directory is not required.

• You also must set the LD_PRELOAD environment variable to the fully qualified path of the libjvm.so[sl].

The library path environment variable is:

32-bit Drivers

• PATH on Windows

• LD_LIBRARY_PATH on Solaris, Linux and HP-UX Itanium

• SHLIB_PATH on HP-UX PA_RISC

• LIBPATH on AIX

64-bit Drivers

• PATH on Windows

• LD_LIBRARY_PATH on Solaris, HP-UX Itanium, and Linux

• LIBPATH on AIX

• The database and/or listener are not started.

• The ODBCINI environment variable is not set correctly for the ODBC drivers on UNIX, Linux, or macOS.

• The ODBC driver’s connection attributes are not set correctly in the system information file on UNIX, Linux,
and macOS. For more information, refer to "Data Source Configuration on UNIX/Linux" or "Data Source
Configuration for macOS" in your driver's user's guide. For example, the host name or port number are not
correctly configured. Refer to "Connection Option Descriptions" in your driver's user's guide for a list of
connection string attributes that are required for each driver to connect properly to the underlying database.

See "The Test Loading Tool" for information about a helpful diagnostic tool.

See also
Test loading tool on page 17

Interoperability issues

Interoperability issues can occur with a working ODBC application in any of the following ODBC components:
ODBC application, ODBC driver, ODBC Driver Manager, and/or data source.

Progress DataDirect for ODBC Drivers: Reference: Version November 202026

Chapter 2: Troubleshooting

For example, any of the following problems may occur because of an interoperability issue:

• SQL statements may fail to execute.

• Data may be returned/updated/deleted/inserted incorrectly.

• A hang or core dump may occur.

Troubleshooting the issue
Isolate the component in which the issue is occurring. Is it an ODBC application, an ODBC driver, an ODBC
Driver Manager, or a data source issue?

To troubleshoot the issue:

1. Test to see if your ODBC application is the source of the problem. To do this, replace your working ODBC
application with a more simple application. If you can reproduce the issue, you know your ODBC application
is not the cause.

On UNIX and Linux, you can use the example application that is shipped with your driver. See "The example
Application" for details.

On Windows, you can use ODBC Test, which is part of the Microsoft ODBC SDK, or the example application
that is shipped with your driver. See "ODBC Test" and "The example Application" for details.

On macOS, you can use iODBC Demo or iODBC Test, which are installed with the iODBC Administrator,
or the example application that is shipped with your driver. See "iODBC Demo and iODBC Test" and "The
example Application" for details.

2. Test to see if the data source is the source of the problem. To do this, use the native database tools that
are provided by your database vendor.

3. If neither the ODBC application nor the data source is the source of your problem, troubleshoot the ODBC
driver and the ODBC Driver Manager.

In this case, we recommend that you create an ODBC trace log to provide to Technical Support. See "ODBC
Trace" for details.

See also
ODBC Test on page 17
The example application on page 22
iODBC Demo and iODBC Test on page 18
ODBC trace on page 13

27Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Troubleshooting issues

Performance issues

Developing performance-oriented ODBC applications is not an easy task.You must be willing to change your
application and test it to see if your changes helped performance. Microsoft’s ODBC Programmer’s Reference
does not provide information about system performance. In addition, ODBC drivers and the ODBC Driver
Manager do not return warnings when applications run inefficiently.

Some general guidelines for developing performance-oriented ODBC applications include:

• Use catalog functions appropriately.

• Retrieve only required data.

• Select functions that optimize performance.

• Manage connections and updates.

See "Designing ODBC applications for performance optimization" for complete information.

See also
Designing ODBC applications for performance optimization on page 73

Progress DataDirect for ODBC Drivers: Reference: Version November 202028

Chapter 2: Troubleshooting

3
Failover

A number of Progress DataDirect drivers support failover to ensure continuous, uninterrupted access to data.

Note: For implementation and configuration details, refer to the "Using failover" topic in the user's guide for
your driver.

Note: While not all drivers support failover, most drivers include the ConnectionRetryCount and
ConnectionRetryDelay connection properties to support continuous access to data.

The the following levels of failover protection (listed from basic to more comprehensive) may be available with
your driver:

• Connection failover provides failover protection for new connections only. The driver fails over new
connections to an alternate, or backup, database server if the primary database server is unavailable, for
example, because of a hardware failure or traffic overload. If a connection to the database is lost, or dropped,
the driver does not fail over the connection. This failover method is the default.

• Extended connection failover provides failover protection for new connections and lost database connections.
If a connection to the database is lost, the driver fails over the connection to an alternate server, preserving
the state of the connection at the time it was lost, but not any work in progress.

• Select Connection failover provides failover protection for new connections and lost database connections.
In addition, it provides protection for Select statements that have work in progress. If a connection to the
database is lost, the driver fails over the connection to an alternate server, preserving the state of the
connection at the time it was lost and preserving the state of any work being performed by Select statements.

29Progress DataDirect for ODBC Drivers: Reference: Version November 2020

The method you choose depends on how failure tolerant your application is. For example, if a communication
failure occurs while processing, can your application handle the recovery of transactions and restart them?
Your application needs the ability to recover and restart transactions when using either extended connection
failover mode or select connection failover mode. The advantage of select mode is that it preserves the state
of any work that was being performed by the Select statement at the time of connection loss. If your application
had been iterating through results at the time of the failure, when the connection is reestablished the driver
can reposition on the same row where it stopped so that the application does not have to undo all of its previous
result processing. For example, if your application were paging through a list of items on a Web page when a
failover occurred, the next page operation would be seamless instead of starting from the beginning.
Performance, however, is a factor in selecting a failover mode. Select mode incurs additional overhead when
tracking what rows the application has already processed.

You can specify which failover method you want to use by setting the Failover Mode connection option.
Regardless of the failover method you choose, you must configure one or multiple alternate servers using the
Alternate Servers connection option.

For details, see the following topics:

• Connection failover

• Extended connection failover

• Select connection failover

• Guidelines for primary and alternate servers

• Using client load balancing

• Using connection retry

• Summary of failover-related options

Connection failover
Connection failover allows an application to connect to an alternate, or backup, database server if the primary
database server is unavailable, for example, because of a hardware failure or traffic overload. Connection
failover provides failover protection for new connections only and does not provide protection for lost connections
to the database, nor does it preserve states for transactions or queries.

You can customize the drivers for connection failover by configuring a list of alternate database servers that
are tried if the primary server is not accepting connections. Connection attempts continue until a connection
is successfully established or until all the alternate database servers have been tried the specified number of
times.

For example, suppose you have the environment shown in the following illustration with multiple database
servers: Database Server A, B, and C. Database Server A is designated as the primary database server,
Database Server B is the first alternate server, and Database Server C is the second alternate server.

Progress DataDirect for ODBC Drivers: Reference: Version November 202030

Chapter 3: Failover

First, the application attempts to connect to the primary database server, Database Server A (1). If connection
failover is enabled and Database Server A fails to accept the connection, the application attempts to connect
to Database Server B (2). If that connection attempt also fails, the application attempts to connect to Database
Server C (3).

In this scenario, it is probable that at least one connection attempt would succeed, but if no connection attempt
succeeds, the driver can retry each alternate database server (primary and alternate) for a specified number
of attempts.You can specify the number of attempts that are made through the connection retry feature.You
can also specify the number of seconds of delay, if any, between attempts through the connection delay feature.
See Using connection retry on page 34 for more information about connection retry.

A driver fails over to the next alternate database server only if a successful connection cannot be established
with the current alternate server. If the driver successfully establishes communication with a database server
and the connection request is rejected by the database server because, for example, the login information is
invalid, then the driver generates an error and does not try to connect to the next database server in the list.
It is assumed that each alternate server is a mirror of the primary and that all authentication parameters and
other related information are the same.

Extended connection failover
Extended connection failover provides failover protection for the following types of connections:

• New connections, in the same way as described in Connection failover on page 30

• Lost connections

When a connection to the database is lost, the driver fails over the connection to an alternate server, restoring
the same state of the connection at the time it was lost. For example, when reestablishing a lost connection
on the alternate database server, the driver performs the following actions:

• Restores the connection using the same connection options specified by the lost connection

• Reallocates statement handles and attributes

• Logs in the user to the database with the same user credentials

• Restores any prepared statements associated with the connection and repopulates the statement pool

• Restores manual commit mode if the connection was in manual commit mode at the time of the failover

31Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Extended connection failover

The driver does not preserve work in progress. For example, if the database server experienced a hardware
failure while processing a query, partial rows processed by the database and returned to the client would be
lost. If the driver was in manual commit mode and one or more Inserts or Updates were performed in the current
transaction before the failover occurred, then the transaction on the primary server is rolled back. The Inserts
or Updates done before the failover are not committed to the primary server.Your application needs to rerun
the transaction after the failover because the Inserts or Updates done before the failover are not repeated by
the driver on the failover connection.

When a failover occurs, if a statement is in allocated or prepared state, the next operation on the statement
returns a SQL state of 01000 and a vendor code of 0. If a statement is in an executed or prepared state, the
next operation returns a SQL state of 40001 and a vendor code of 0. Either condition returns an error message
similar to:

Your connection has been terminated. However, you have been successfully connected to
the next available AlternateServer: 'HOSTNAME=Server4:PORTNUMBER= 1521:SERVICENAME=test'.
 All active transactions have been rolled back.

The driver retains all connection settings made through ODBC API calls when a failover connection is made.
It does not, however, retain any session settings established through SQL statements.This can be done through
the Initialization String connection option, described in the individual driver chapters.

The driver retains the contents of parameter buffers, which can be important when failing over after a fetch.
All Select statements are re-prepared at the time the failover connection is made. All other statements are
placed in an allocated state.

If an error occurs while the driver is reestablishing a lost connection, the driver can fail the entire failover process
or proceed with the process as far as it can. For example, suppose an error occurred while reestablishing the
connection because a table for which the driver had a prepared statement did not exist on the alternate
connection. In this case, you may want the driver to notify your application of the error and proceed with the
failover process.You can choose how you want the driver to behave if errors occur during failover by setting
the Failover Granularity connection option.

During the failover process, your application may experience a short pause while the driver establishes a
connection on an alternate server. If your application is time-sensitive (a real-time customer order application,
for example) and cannot absorb this wait, you can set the Failover Preconnect connection option to true. Setting
the Failover Preconnect option to true instructs the driver to establish connections to the primary server and
an alternate server at the same time.Your application uses the first connection that is successfully established.
If this connection to the database is lost at a later time, the driver saves time in reestablishing the connection
on the server to which it fails over because it can use the spare connection in its failover process.

This pre-established failover connection is not used by the driver until the driver determines that it needs to fail
over. If the server to which the driver is connected or the network equipment through which the connection is
routed is configured with a timeout, the pre-configured failover connection could time out. The pre-configured
failover connection can also be lost if the failover server is brought down and back up again. The driver tries
to establish the connection to the failover server again if the connection is lost.

Select connection failover
Select connection failover provides failover protection for the following types of connections:

• New connections, in the same way as described in Connection failover on page 30

• Lost connections, in the same way as described in Extended connection failover on page 31

Progress DataDirect for ODBC Drivers: Reference: Version November 202032

Chapter 3: Failover

In addition, the driver can recover work in progress because it keeps track of the last Select statement the
application executed on each Statement handle, including how many rows were fetched to the client. For
example, if the database had only processed 500 of 1,000 rows requested by a Select statement when the
connection was lost, the driver would reestablish the connection to an alternate server, re-execute the Select
statement, and position the cursor on the next row so that the driver can continue fetching the balance of rows
as if nothing had happened.

Performance, however, is a factor when considering whether to use Select mode. Select mode incurs additional
overhead when tracking what rows the application has already processed.

The driver only recovers work requested by Select statements.You must explicitly restart the following types
of statements after a failover occurs:

• Insert, Update, or Delete statements

• Statements that modify the connection state, for example, SET or ALTER SESSION statements

• Objects stored in a temporary tablespace or global temporary table

• Partially executed stored procedures and batch statements

When in manual transaction mode, no statements are rerun if any of the operations in the transaction were
Insert, Update, or Delete. This is true even if the statement in process at the time of failover was a Select
statement.

By default, the driver verifies that the rows that are restored match the rows that were originally fetched and,
if they do not match, generates an error warning your application that the Select statement must be reissued.
By setting the Failover Granularity connection option, you can customize the driver to ignore this check altogether
or fail the entire failover process if the rows do not match.

When the row comparison does not agree, the default behavior of Failover Granularity returns a SQL state of
40003 and an error message similar to:

Unable to position to the correct row after a successful failover attempt to
AlternateServer: 'HOSTNAME=Server4:PORTNUMBER= 1521:SERVICENAME=test'. You must reissue
 the select statement.

If you have configured Failover Granularity to fail the entire failover process, the driver returns a SQL state of
08S01 and an error message similar to:

Your connection has been terminated and attempts to complete the failover process to the
 following Alternate Servers have failed: AlternateServer: 'HOSTNAME=Server4:PORTNUMBER=
 1521:SERVICENAME=test'. All active transactions have been rolled back.

Guidelines for primary and alternate servers
Many databases provide advanced database replication technologies such as DB2 High Availability Disaster
Recovery (HADR) and Oracle Real Application Clusters (RAC), and Microsoft Cluster Server (MSCS). The
failover functionality provided by the drivers does not require any of these technologies, but can work with them
to provide comprehensive failover protection. Use the following guidelines for primary and alternate servers to
ensure that failover works correctly in your environment:

• Alternate servers should mirror data on the primary server or be part of a configuration where multiple
database nodes share the same physical data.

• If using failover with DB2 HADR, the primary server must be the primary server configured in your HADR
system and any alternate server must be a standby server configured in your HADR system.

33Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Guidelines for primary and alternate servers

Using client load balancing
Client load balancing helps distribute new connections in your environment so that no one server is overwhelmed
with connection requests. When client load balancing is enabled, the order in which primary and alternate
database servers are tried is random. For example, suppose that client load balancing is enabled as shown in
the following illustration:

First, Database Server B is tried (1). Then, Database Server C may be tried (2), followed by a connection
attempt to Database Server A (3). In contrast, if client load balancing were not enabled in this scenario, each
database server would be tried in sequential order, primary server first, then each alternate server based on
its entry order in the alternate servers list.

Client load balancing is controlled by the Load Balancing connection option.

Using connection retry
Connection retry defines the number of times the driver attempts to connect to the primary server and, if
configured, alternate database servers after the initial unsuccessful connection attempt. It can be used with
connection failover, extended connection failover, and select failover. Connection retry can be an important
strategy for system recovery. For example, suppose you have a power failure in which both the client and the
server fails. When the power is restored and all computers are restarted, the client may be ready to attempt a
connection before the server has completed its startup routines. If connection retry is enabled, the client
application can continue to retry the connection until a connection is successfully accepted by the server.

Connection retry can be used in environments that have only one server or can be used as a complementary
feature with connection failover in environments with multiple servers.

Using the connection options Connection Retry Count and Connection Retry Delay, you can specify the number
of times the driver attempts to connect and the time in seconds between connection attempts.

Progress DataDirect for ODBC Drivers: Reference: Version November 202034

Chapter 3: Failover

Summary of failover-related options
The following table summarizes how failover-related connection options work with the drivers. See "Connection
Option Descriptions" in the user's guide for your driver for further details. Not all options are available in every
failover-enabled driver. The step numbers in the table refer the procedure that follows the table

Table 1: Summary: Failover and Related Connection Options

CharacteristicOption

One or multiple alternate database servers. An IP address or server name
identifying each server is required.

Alternate Servers

(See step 1 on page 35)

Number of times the driver retries the primary database server, and if
specified, alternate servers until a successful connection is established.

Connection Retry Count

(See step 5 on page 36)

Wait interval, in seconds, between connection retry attempts when the
Connection Retry Count option is set to a positive integer.

Connection Retry Delay

(See step 6 on page 36)

The type of behavior that the driver exhibits when errors are detected during
the failover process.

Failover Granularity

(See step 3 on page 35)

The type of failover that the driver attempts.Failover Mode

(See step 2 on page 35)

Determines whether the driver makes a connection attempt to the next server
in the Alternate Servers list at the time of the initial connection.

Failover Preconnect

(See step 4 on page 36)

Determines whether the driver uses client load balancing in its attempts to
connect to primary and alternate database servers. If enabled, the driver
attempts to connect to the database servers in random order.

Load Balancing

(See step 7 on page 36)

1. To configure connection failover, you must specify one or more alternate database servers that are tried
at connection time if the primary server is not accepting connections. To do this, use the Alternate Servers
connection option. Connection attempts continue until a connection is successfully established or until all
the database servers in the list have been tried once (the default).

2. Choose a failover method by setting the Failover Mode connection option.The default method is Connection
(FailoverMode=0).

3. If Failover Mode is Extended Connection (FailoverMode=1) or Select (FailoverMode=2), set the Failover
Granularity connection option to specify how you want the driver to behave if errors occur while trying to
reestablish a lost connection. The default behavior of the driver is Non-Atomic (FailoverGranularity=0),
which continues with the failover process and posts any errors on the statement on which they occur. Other
values are:

Atomic (FailoverGranularity=1): the driver fails the entire failover process if an error is generated as the
result of anything other than executing and repositioning a Select statement. If an error is generated as a
result of repositioning a result set to the last row position, the driver continues with the failover process, but
generates a warning that the Select statement must be reissued.

35Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Summary of failover-related options

Atomic including Repositioning (FailoverGranularity=2): the driver fails the entire failover process if any
error is generated as the result of restoring the state of the connection or the state of work in progress.

Disable Integrity Check (FailoverGranularity=3: the driver does not verify that the rows restored during the
failover process match the original rows. This value applies only when Failover Mode is set to Select
(FailoverMode=2).

4. Optionally, enable the Failover Preconnect connection option (FailoverPreconnect=1) if you want the driver
to establish a connection with the primary and an alternate server at the same time. This value applies only
when Failover Mode is set to Extended Connection (FailoverMode=1) or Select (FailoverMode=2). The
default behavior is to connect to an alternate server only when failover is caused by an unsuccessful
connection attempt or a lost connection (FailoverPreconnect=0).

5. Optionally, specify the number of times the driver attempts to connect to the primary and alternate database
servers after the initial unsuccessful connection attempt. By default, the driver does not retry. To set this
feature, use the Connection Retry Count connection option.

6. Optionally, specify the wait interval, in seconds, between attempts to connect to the primary and alternate
database servers. The default interval is 3 seconds. To set this feature, use the Connection Retry Delay
connection option.

7. Optionally, specify whether the driver will use client load balancing in its attempts to connect to primary and
alternate database servers. If load balancing is enabled, the driver uses a random pattern instead of a
sequential pattern in its attempts to connect. The default value is not to use load balancing. To set this
feature, use the Load Balancing connection option.

A connection string example

The following connection string configures the Oracle Wire Protocol driver to use connection failover in
conjunction with some of its optional features.

DSN=AcctOracleServer;AlternateServers=(HostName=AccountingOracleServer:PortNumber=1521:
SID=Accounting, HostName=255.201.11.24:PortNumber=1522:ServiceName=ABackup.NA.MyCompany);
ConnectionRetryCount=4;ConnectionRetryDelay=5;LoadBalancing=1;FailoverMode=0

Specifically, this connection string configures the driver to use two alternate servers as connection failover
servers, to attempt to connect four additional times if the initial attempt fails, to wait five seconds between
attempts, to try the primary and alternate servers in a random order, and to attempt reconnecting on new
connections only. The additional connection information required for the alternate servers is specified in the
data source AcctOracleServer.

An odbc.ini file example

To configure the 32-bit Oracle Wire Protocol driver to use connection failover in conjunction with some of its
optional features in your odbc.ini file, you could set the following connection string attributes:

Driver=ODBCHOME/lib/ivoraxx.so
Description=DataDirect Oracle Wire Protocol driver
...
AlternateServers=(HostName=AccountingOracleServer:PortNumber=1521:SID=Accounting,
HostName=255.201.11.24:PortNumber=1522:ServiceName=ABackup.NA.MyCompany)
...
ConnectionRetryCount=4
ConnectionRetryDelay=5
...
LoadBalancing=0
...
FailoverMode=1
...
FailoverPreconnect=1
...

Progress DataDirect for ODBC Drivers: Reference: Version November 202036

Chapter 3: Failover

Specifically, this odbc.ini configuration tells the driver to use two alternate servers as connection failover servers,
to attempt to connect four additional times if the initial attempt fails, to wait five seconds between attempts, to
try the primary and alternate servers in sequential order (do not use load balancing), to attempt reconnecting
on new and lost connections, and to establish a connection with the primary and alternate servers at the same
time.

37Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Summary of failover-related options

Progress DataDirect for ODBC Drivers: Reference: Version November 202038

Chapter 3: Failover

4
Client information

Many databases allow applications to store client information associated with a connection. For example, the
following types of information can be useful for database administration and monitoring purposes:

• Name of the application currently using the connection.

• User ID for whom the application using the connection is performing work. The user ID may be different
than the user ID that was used to establish the connection.

• Host name of the client on which the application using the connection is running.

• Product name and version of the driver on the client.

• Additional information that may be used for accounting or troubleshooting purposes, such as an accounting
ID.

Client information is available in the following ODBC drivers:

• DB2 Wire Protocol

• Oracle Wire Protocol

For DB2 V9.5 and higher for Linux/UNIX/Windows and DB2 for z/OS, this information can feed directly into the
Workload Manager (WLM) for workload management and monitoring purposes.

For Oracle 11g R2 and higher, this information is managed through the client information feature.

For details, see the following topics:

• How databases store client information

• Storing client information

39Progress DataDirect for ODBC Drivers: Reference: Version November 2020

How databases store client information
Typically, databases that support storing client information do so by providing a register, a variable, or a column
in a system table in which the information is stored. If an application attempts to store information and the
database does not provide a mechanism for storing that information, the driver caches the information locally.
Similarly, if an application returns client information and the database does not provide a mechanism for storing
that information, the driver returns the locally cached value.

Storing client information
Your application can store client information associated with a connection.The following table shows the driver
connection options that your application can use to store client information and where that client information
is stored for each database. See the specific driver chapters for a description of each option.

Table 2: Database Locations for Storing Client Information

LocationDatabaseDescriptionOption

CURRENT CLIENT_ACCTNG register
(DB2 for Linux/UNIX/Windows) or CLIENT
ACCTNG register (DB2 for z/OS).

DB2Additional information that may be
used for accounting or
troubleshooting purposes, such as
an accounting ID

Accounting
Info

CLIENT_INFO value in the V$SESSION
table.

Oracle

ACTION value in the V$SESSION table.OracleThe current action within the current
module.

Action

CURRENT CLIENT_APPLNAME register
(DB2 for Linux/UNIX/Windows) or CLIENT
APPLNAME register (DB2 for z/OS). For
DB2 V9.1 and higher for
Linux/UNIX/Windows, this value is also
stored in the APPL_NAME value in the
SYSIBMADM.APPLICATIONS table.

DB2Name of the application currently
using the connection

Application
Name

CLIENT_IDENTIFIER attribute. In
addition, this value is also stored in the
PROGRAM value in the V$SESSION
table.

Oracle

CURRENT CLIENT_WRKSTNNAME
register (DB2 for Linux/UNIX/Windows) or
CLIENT WRKSTNNAME register (DB2 for
z/OS).

DB2Host name of the client on which the
application using the connection is
running

Client Host
Name

MACHINE value in the V$SESSION table.Oracle

CLIENT_IDENTIFIER value in the
V$SESSION table.

OracleAdditional information about the
client

Client ID

Progress DataDirect for ODBC Drivers: Reference: Version November 202040

Chapter 4: Client information

LocationDatabaseDescriptionOption

CURRENT CLIENT_USERID register
(DB2 for Linux/UNIX/Windows) or
CLIENT USERID register (DB2 for z/OS).

DB2User ID for whom the application
using the connection is performing
work

Client User

OSUSER value in the V$SESSION table.Oracle

MODULE value in the V$SESSION table.OracleThe name of a stored procedure or
the name of the application

Module

CLIENT_PRDID value. For DB2 V9.1 and
higher for Linux/UNIX/Windows, the
CLIENT_PRDID value is located in the
SYSIBMADM.APPLICATIONS table.

DB2Product name and version of the
driver on the client

Program ID

PROCESS value in the V$SESSION table.Oracle

41Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Storing client information

Progress DataDirect for ODBC Drivers: Reference: Version November 202042

Chapter 4: Client information

5
Code page values

This chapter lists supported code page values, along with a description, for the Progress DataDirect for ODBC
drivers.

For details, see the following topics:

• IANAAppCodePage values

• IBM to IANA code page values

• Teradata code page values

IANAAppCodePage values
The following table lists supported code page values for the IANAAppCodePage connection option. Refer to
IANAAppCodePage connection option description in your user's guide for information about this attribute.

To determine the correct numeric value (the MIBenum value) for the IANAAppCodePage connection string
attribute, perform the following steps:

1. Determine the code page of your database.

2. Determine the MIBenum value that corresponds to your database code page. To do this, go to:

http://www.iana.org/assignments/character-sets

43Progress DataDirect for ODBC Drivers: Reference: Version November 2020

http://www.iana.org/assignments/character-sets

On this web page, search for the name of your database code page. This name will be listed as an alias or
the name of a character set, and will have a MIBenum value associated with it.

3. Check the following table to make sure that the MIBenum value you looked up on the IANA Web page is
supported by the driver. If the value is not listed, contact Progress Technical Support to request support for
that value.

Table 3: IANAAppCodePage Values

DescriptionValue (MIBenum)

US_ASCII3

ISO_8859_14

ISO_8859_25

ISO_8859_36

ISO_8859_47

ISO_8859_58

ISO_8859_69

ISO_8859_710

ISO_8859_811

ISO_8859_912

JIS_Encoding16

Shift_JIS17

EUC_JP18

ISO_646_IRV30

KS_C_560136

ISO_2022_KR37

EUC_KR38

ISO_2022_JP39

ISO_2022_JP_240

GB_2312_8057

ISO_2022_CN104

ISO_2022_CN_EXT105

Progress DataDirect for ODBC Drivers: Reference: Version November 202044

Chapter 5: Code page values

DescriptionValue (MIBenum)

ISO_8859_13109

ISO_8859_14110

ISO_8859_15111

GBK113

HP_ROMAN82004

IBM8502009

IBM8522010

IBM4372011

IBM8622013

IBM-Thai2016

WINDOWS-31J2024

GB23122025

Big52026

MACINTOSH2027

IBM0372028

IBM0382029

IBM2732030

IBM2772033

IBM2782034

IBM2802035

IBM2842037

IBM2852038

IBM2902039

IBM2972040

IBM4202041

IBM4242043

45Progress DataDirect for ODBC Drivers: Reference: Version November 2020

IANAAppCodePage values

DescriptionValue (MIBenum)

IBM5002044

IBM8512045

IBM8552046

IBM8572047

IBM8602048

IBM8612049

IBM8632050

IBM8642051

IBM8652052

IBM8682053

IBM8692054

IBM8702055

IBM8712056

IBM9182062

IBM10262063

KOI8_R2084

HZ_GB_23122085

IBM8662086

IBM7752087

IBM008582089

IBM011402091

IBM011412092

IBM011422093

IBM011432094

IBM011442095

IBM011452096

Progress DataDirect for ODBC Drivers: Reference: Version November 202046

Chapter 5: Code page values

DescriptionValue (MIBenum)

IBM011462097

IBM011472098

IBM011482099

IBM011492100

IBM10472102

WINDOWS_12502250

WINDOWS_12512251

WINDOWS_12522252

WINDOWS_12532253

WINDOWS_12542254

WINDOWS_12552255

WINDOWS_12562256

WINDOWS_12572257

WINDOWS_12582258

TIS_6202259

IBM-9392000000939 1

IBM-943_P14A-20002000000943 1

IBM-10252000001025 1

IBM-43962000004396 1

IBM-50262000005026 1

IBM-50352000005035 1

1 These values are assigned by Progress DataDirect and do not appear in http://www.iana.org/assignments/character-sets.

47Progress DataDirect for ODBC Drivers: Reference: Version November 2020

IANAAppCodePage values

IBM to IANA code page values
The following table lists the most commonly used IBM code pages and their IANA code page equivalents.
These IANA values are valid for the Character Set for CCSID 65535 connection option in the Progress DataDirect
DB2 Wire Protocol driver. Refer to the Progress DataDirect DB2 Wire Protocol driver user's guide for more
information.

Table 4: IBM to IANA Code Page Values

IANA NameValue (MIBenum)IBM Number

IBM037202837

IBM038202938

IBM2902039290

IBM-93920000009392300

IBM-943_P14A-200020000009432301 3

WINDOWS-31J20243014

IBM5002044500

IMB-Thai2016838

IBM8572047857

IBM8602048860

IBM8612049861

Shift_JIS17897

ISO_8859-36913

ISO_8859-47914

Shift_JIS17932

IBM-93920000009392939

IBM-943_P14A-2000200000094329433

WINDOWS-31J20249434

Big52026950

2 These values are assigned by Progress DataDirect and do not appear in http://www.iana.org/assignments/character-sets.
3 If your application runs on a UNIX or Linux platform, use this value.
4 If your application runs on a Windows platform, use this value.

Progress DataDirect for ODBC Drivers: Reference: Version November 202048

Chapter 5: Code page values

IANA NameValue (MIBenum)IBM Number

UTF-1610151200

UTF-81061208

ISO_8859-2512503

WINDOWS-1250225012504

ISO_8859-5812513

WINDOWS-1251225112514

ISO_8859-1412523

WINDOWS-1252225212524

ISO_8859-71012533

WINDOWS-1253225312534

ISO_8859-91212543

WINDOWS-1254225412544

ISO_8859-81112553

WINDOWS-1255225512554

ISO_8859-6912563

WINDOWS-1256225612564

WINDOWS-125722571257

WINDOWS-125822581258

IBM-4396200000439624396

IBM-5026200000502625026

IBM-5035200000503525035

UTF-1610155297

UTF-81065304

UTF-16BE101313488

49Progress DataDirect for ODBC Drivers: Reference: Version November 2020

IBM to IANA code page values

Teradata code page values
The following table lists code pages that are valid only for the Progress DataDirect Teradata driver. These
values do not appear in http://www.iana.org/assignments/character-sets and are assigned by Progress
DataDirect. Refer to the Progress DataDirect Teradata driver user's guide for more information.

Table 5:Teradata Code Page Values

DescriptionValue (MIBenum)

ebcdic2000005039

ebcdic037_0e2000005040

ebcdic273_0e2000005041

ebcdic277_0e2000005042

hangulebcdic933_1ii2000005043

hangulksc5601_2r42000005044

kanjiebcdic5026_0i2000005045

kanjiebcdic5035_0i2000005046

kanjieuc_0u2000005047

kanjisjis_0s2000005048

katakanaebcdic2000005049

latin1252_0a2000005050

latin1_0a2000005051

latin9_0a2000005052

schebcdic935_2ij2000005053

schgb2312_1t02000005054

tchbig5_1r02000005055

tchebcdic937_3i2000005056

Progress DataDirect for ODBC Drivers: Reference: Version November 202050

Chapter 5: Code page values

http://www.iana.org/assignments/character-sets

6
ODBC API and scalar functions

This chapter lists the ODBC API functions supported by Progress DataDirect for ODBC drivers. In addition, it
lists the scalar functions that you use in SQL statements.

For details, see the following topics:

• API functions

• Scalar functions

API functions
Progress DataDirect for ODBC drivers are Level 1 compliant, and support ODBC Core and Level 1 functions.
As described in the following table, a limited set of Level 2 functions are also supported.

51Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Table 6: Function Conformance for ODBC 2.x Applications

Level 2 FunctionsLevel 1 FunctionsCore Functions

SQLBrowseConnect

SQLDataSources

SQLDescribeParam5

SQLExtendedFetch (forward scrolling
only)

SQLMoreResults

SQLNativeSql

SQLNumParams

SQLParamOptions5

SQLSetScrollOptions

SQLColumns

SQLDriverConnect

SQLGetConnectOption

SQLGetData

SQLGetFunctions

SQLGetInfo

SQLGetStmtOption5

SQLGetTypeInfo

SQLParamData

SQLPutData

SQLSetConnectOption

SQLSetStmtOption5

SQLSpecialColumns

SQLStatistics

SQLTables

SQLAllocConnect5

SQLAllocEnv5

SQLAllocStmt5

SQLBindCol

SQLBindParameter

SQLCancel

SQLColAttributes

SQLConnect

SQLDescribeCol

SQLDisconnect

SQLDrivers

SQLError

SQLExecDirect

SQLExecute

SQLFetch

SQLFreeConnect5

SQLFreeEnv5

SQLFreeStmt

SQLGetCursorName

SQLNumResultCols

SQLPrepare

SQLRowCount

SQLSetCursorName

SQLTransact5

The functions for ODBC 3.x Applications that the drivers support are listed in the following table. For any
additions to these supported functions or differences in the support of specific functions, refer to "ODBC
compliance" or "ODBC conformance" in the user's guide for your driver.

5 For macOS, this function is not supported by the iODBC driver manager; therefore, it cannot currently be executed by the driver.

Progress DataDirect for ODBC Drivers: Reference: Version November 202052

Chapter 6: ODBC API and scalar functions

Table 7: Function Conformance for ODBC 3.x Applications

SQLGetDescField

SQLGetDescRec

SQLGetDiagField

SQLGetDiagRec

SQLGetEnvAttr

SQLGetFunctions

SQLGetInfo

SQLGetStmtAttr

SQLGetTypeInfo

SQLMoreResults

SQLNativeSql

SQLNumParens

SQLNumResultCols

SQLParamData

SQLPrepare

SQLPutData

SQLRowCount

SQLSetConnectAttr

SQLSetCursorName

SQLSetDescField

SQLSetDescRec

SQLSetEnvAttr

SQLSetStmtAttr

SQLSpecialColumns

SQLStatistics

SQLTables

SQLTransact

SQLAllocHandle

SQLBindCol

SQLBindParameter

SQLBrowseConnect (except for Progress)

SQLBulkOperations

SQLCancel

SQLCloseCursor

SQLColAttribute

SQLColumns

SQLConnect

SQLCopyDesc

SQLDataSources

SQLDescribeCol

SQLDisconnect

SQLDriverConnect

SQLDrivers

SQLEndTran

SQLError

SQLExecDirect

SQLExecute

SQLExtendedFetch

SQLFetch

SQLFetchScroll (forward scrolling only)

SQLFreeHandle

SQLFreeStmt

SQLGetConnectAttr

SQLGetCursorName

SQLGetData

Scalar functions
This section lists the scalar functions that ODBC supports.Your database system may not support all these
functions. Refer to the documentation for your database system to find out which functions are supported. Also,
depending on the driver that you are using, all the scalar functions may not be supported. To check which
scalar functions are supported by a driver, use the SQLGetInfo ODBC function.

53Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Scalar functions

You can use these scalar functions in SQL statements using the following syntax:

{fn scalar-function}

where scalar-function is one of the functions listed in the following tables. For example:

SELECT {fn UCASE(NAME)} FROM EMP

Table 8: Scalar Functions

System FunctionsTimedate FunctionsNumeric FunctionsString Functions

CURSESSIONIDCURDATEABSASCII

CURRENT_USERCURTIMEACOSBIT_LENGTH

DATABASEDATEDIFFASINCHAR

IDENTITYDAYNAMEATANCHAR_LENGTH

USERDAYOFMONTHATAN2CONCAT

DAYOFWEEKBITANDDIFFERENCE

DAYOFYEARBITORHEXTORAW

EXTRACTCEILINGINSERT

HOURCOSLCASE

MINUTECOTLEFT

MONTHDEGREESLENGTH

MONTHNAMEEXPLOCATE

NOWFLOORLOWER

QUARTERLOGLTRIM

SECONDLOG10OCTET_LENGTH

WEEKMODRAWTOHEX

YEARPIREPEAT

CURRENT_DATEPOWERREPLACE

CURRENT_TIMERADIANSRIGHT

CURRENT_
TIMESTAMP

RANDRTRIM

ROUNDSOUNDEX

ROUNDMAGICSPACE

Progress DataDirect for ODBC Drivers: Reference: Version November 202054

Chapter 6: ODBC API and scalar functions

System FunctionsTimedate FunctionsNumeric FunctionsString Functions

SIGNSUBSTR

SINSUBSTRING

SQRTUCASE

TANUPPER

TRUNCATE

String functions

The following table lists the string functions that ODBC supports.

The string functions listed accept the following arguments:

• string_exp can be the name of a column, a string literal, or the result of another scalar function, where
the underlying data type is SQL_CHAR, SQL_VARCHAR, or SQL_LONGVARCHAR.

• start, length, and count can be the result of another scalar function or a literal numeric value, where
the underlying data type is SQL_TINYINT, SQL_SMALLINT, or SQL_INTEGER.

The string functions are one-based; that is, the first character in the string is character 1.

Character string literals must be surrounded in single quotation marks.

Table 9: Scalar String Functions

ReturnsFunction

ASCII code value of the leftmost character of string_exp as an integer.ASCII(string_exp)

The length in bits of the string expression.BIT_LENGTH(string_exp)

[ODBC 3.0 only]

The character with the ASCII code value specified by code. code should be
between 0 and 255; otherwise, the return value is data-source dependent.

CHAR(code)

The length in characters of the string expression, if the string expression is of a
character data type; otherwise, the length in bytes of the string expression (the
smallest integer not less than the number of bits divided by 8). (This function is
the same as the CHARACTER_LENGTH function.)

CHAR_LENGTH(string_exp)

[ODBC 3.0 only]

The length in characters of the string expression, if the string expression is of a
character data type; otherwise, the length in bytes of the string expression (the
smallest integer not less than the number of bits divided by 8). (This function is
the same as the CHAR_LENGTH function.)

CHARACTER_LENGTH(string_exp)
[ODBC 3.0 only]

The string resulting from concatenating string_exp2 and string_exp1.The
string is system dependent.

CONCAT(string_exp1, string_exp2)

55Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Scalar functions

ReturnsFunction

An integer value that indicates the difference between the values returned by
the SOUNDEX function for string_exp1 and string_exp2.

DIFFERENCE(string_exp1,
string_exp2)

A string where length characters have been deleted from string_exp1
beginning at start and where string_exp2 has been inserted into
string_exp beginning at start.

INSERT(string_exp1, start, length,
string_exp2)

Uppercase characters in string_exp converted to lowercase.LCASE(string_exp)

The count of characters of string_exp.LEFT(string_exp,count)

The number of characters in string_exp, excluding trailing blanks and the
string termination character.

LENGTH(string_exp)

The starting position of the first occurrence of string_exp1 within
string_exp2. If start is not specified, the search begins with the first character
position in string_exp2. If start is specified, the search begins with the
character position indicated by the value of start. The first character position
in string_exp2 is indicated by the value 1. If string_exp1 is not found, 0 is
returned.

LOCATE(string_exp1,
string_exp2[,start])

The characters of string_exp with leading blanks removed.LTRIM(string_exp)

The length in bytes of the string expression. The result is the smallest integer
not less than the number of bits divided by 8.

OCTET_LENGTH(string_exp)

[ODBC 3.0 only]

The position of the first character expression in the second character expression.
The result is an exact numeric with an implementation-defined precision and a
scale of 0.

POSITION(character_exp IN
character_exp)

[ODBC 3.0 only]

A string composed of string_exp repeated count times.REPEAT(string_exp, count)

Replaces all occurrences of string_exp2 in string_exp1 with string_exp3.REPLACE(string_exp1, string_exp2,
string_exp3)

The rightmost count of characters in string_exp.RIGHT(string_exp, count)

The characters of string_exp with trailing blanks removed.RTRIM(string_exp)

A data source dependent string representing the sound of the words in
string_exp.

SOUNDEX(string_exp)

A string consisting of count spaces.SPACE(count)

A string derived from string_exp beginning at the character position start
for length characters.

SUBSTRING(string_exp, start,
length)

Lowercase characters in string_exp converted to uppercase.UCASE(string_exp)

Progress DataDirect for ODBC Drivers: Reference: Version November 202056

Chapter 6: ODBC API and scalar functions

Numeric functions

The following table lists the numeric functions that ODBC supports.

The numeric functions listed accept the following arguments:

• numeric_exp can be a column name, a numeric literal, or the result of another scalar function, where the
underlying data type is SQL_NUMERIC, SQL_DECIMAL, SQL_TINYINT, SQL_SMALLINT, SQL_INTEGER,
SQL_BIGINT, SQL_FLOAT, SQL_REAL, or SQL_DOUBLE.

• float_exp can be a column name, a numeric literal, or the result of another scalar function, where the
underlying data type is SQL_FLOAT.

• integer_exp can be a column name, a numeric literal, or the result of another scalar function, where the
underlying data type is SQL_TINYINT, SQL_SMALLINT, SQL_INTEGER, or SQL_BIGINT.

Table 10: Scalar Numeric Functions

ReturnsFunction

Absolute value of numeric_exp.ABS(numeric_exp)

Arccosine of float_exp as an angle in radians.ACOS(float_exp)

Arcsine of float_exp as an angle in radians.ASIN(float_exp)

Arctangent of float_exp as an angle in radians.ATAN(float_exp)

Arctangent of the x and y coordinates, specified by float_exp1 and
float_exp2 as an angle in radians.

ATAN2(float_exp1, float_exp2)

Smallest integer greater than or equal to numeric_exp.CEILING(numeric_exp)

Cosine of float_exp as an angle in radians.COS(float_exp)

Cotangent of float_exp as an angle in radians.COT(float_exp)

Number if degrees converted from numeric_exp radians.DEGREES(numeric_exp)

Exponential value of float_exp.EXP(float_exp)

Largest integer less than or equal to numeric_exp.FLOOR(numeric_exp)

Natural log of float_exp.LOG(float_exp)

Base 10 log of float_exp.LOG10(float_exp)

Remainder of integer_exp1 divided by integer_exp2.MOD(integer_exp1, integer_exp2)

Constant value of pi as a floating-point number.PI()

Value of numeric_exp to the power of integer_exp.POWER(numeric_exp, integer_exp)

Number of radians converted from numeric_exp degrees.RADIANS(numeric_exp)

57Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Scalar functions

ReturnsFunction

Random floating-point value using integer_exp as the optional seed
value.

RAND([integer_exp])

numeric_exp rounded to integer_exp places right of the decimal (left
of the decimal if integer_exp is negative).

ROUND(numeric_exp, integer_exp)

Indicator of the sign of numeric_exp. If numeric_exp < 0, -1 is returned.
If numeric_exp = 0, 0 is returned. If numeric_exp > 0, 1 is returned.

SIGN(numeric_exp)

Sine of float_exp, where float_exp is an angle in radians.SIN(float_exp)

Square root of float_exp.SQRT(float_exp)

Tangent of float_exp, where float_exp is an angle in radians.TAN(float_exp)

numeric_exp truncated to integer_exp places right of the decimal. (If
integer_exp is negative, truncation is to the left of the decimal.)

TRUNCATE(numeric_exp, integer_exp)

Date and time functions

The following table lists the date and time functions that ODBC supports.

The date and time functions listed accept the following arguments:

• date_exp can be a column name, a date or timestamp literal, or the result of another scalar function, where
the underlying data type can be represented as SQL_CHAR, SQL_VARCHAR, SQL_DATE, or
SQL_TIMESTAMP.

• time_exp can be a column name, a timestamp or timestamp literal, or the result of another scalar function,
where the underlying data type can be represented as SQL_CHAR, SQL_VARCHAR, SQL_TIME, or
SQL_TIMESTAMP.

• timestamp_exp can be a column name; a time, date, or timestamp literal; or the result of another scalar
function, where the underlying data type can be represented as SQL_CHAR, SQL_VARCHAR, SQL_TIME,
SQL_DATE, or SQL_TIMESTAMP.

Table 11: Scalar Time and Date Functions

ReturnsFunction

Current date.CURRENT_DATE()

[ODBC 3.0 only]

Current local time. The time-precision argument
determines the seconds precision of the returned value.

CURRENT_TIME[(time-precision)]

[ODBC 3.0 only]

Current local date and local time as a timestamp value.
The timestamp-precision argument determines the
seconds precision of the returned timestamp.

CURRENT_TIMESTAMP([timestamp-precision])

[ODBC 3.0 only]

Progress DataDirect for ODBC Drivers: Reference: Version November 202058

Chapter 6: ODBC API and scalar functions

ReturnsFunction

Current date as a date value.CURDATE()

Current local time as a time value.CURTIME()

Character string containing a data-source-specific name
of the day for the day portion of date_exp.

DAYNAME(date_exp)

Day of the month in date_exp as an integer value (1–31).DAYOFMONTH(date_exp)

Day of the week in date_exp as an integer value (1–7).DAYOFWEEK(date_exp)

Day of the year in date_exp as an integer value (1–366).DAYOFYEAR(date_exp)

Any of the date and time terms can be extracted from
datetime_value.

EXTRACT({YEAR | MONTH | DAY | HOUR | MINUTE |
SECOND} FROM datetime_value)

Hour in time_exp as an integer value (0–23).HOUR(time_exp)

Minute in time_exp as an integer value (0–59).MINUTE(time_exp)

Month in date_exp as an integer value (1–12).MONTH(date_exp)

Character string containing the data source-specific name
of the month.

MONTHNAME(date_exp)

Current date and time as a timestamp value.NOW()

Quarter in date_exp as an integer value (1–4).QUARTER(date_exp)

Second in date_exp as an integer value (0–59).SECOND(time_exp)

Timestamp calculated by adding integer_exp intervals
of type interval to time_exp. interval can be one of the
following values:

SQL_TSI_FRAC_SECOND

SQL_TSI_SECOND

SQL_TSI_MINUTE

SQL_TSI_HOUR

SQL_TSI_DAY

SQL_TSI_WEEK

SQL_TSI_MONTH

SQL_TSI_QUARTER

SQL_TSI_YEAR

Fractional seconds are expressed in billionths of a
second.

TIMESTAMPADD(interval, integer_exp, time_exp)

59Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Scalar functions

ReturnsFunction

Integer number of intervals of type interval by which
time_exp2 is greater than time_exp1. interval has the
same values as TIMESTAMPADD. Fractional seconds
are expressed in billionths of a second.

TIMESTAMPDIFF(interval, time_exp1, time_exp2)

Week of the year in date_exp as an integer value (1–53).WEEK(date_exp)

Year in date_exp. The range is data-source dependent.YEAR(date_exp)

System functions

The following table lists the system functions that ODBC supports.

Table 12: Scalar System Functions

ReturnsFunction

Name of the database, corresponding to the connection handle (hdbc).DATABASE()

value, if exp is null.IFNULL(exp,value)

Authorization name of the user.USER()

Progress DataDirect for ODBC Drivers: Reference: Version November 202060

Chapter 6: ODBC API and scalar functions

7
Internationalization, localization, and Unicode

This chapter provides an overview of how internationalization, localization, and Unicode relate to each other.
It also provides a background on Unicode, and how it is accommodated by Unicode and non-Unicode ODBC
drivers.

For details, see the following topics:

• Internationalization and Localization

• Unicode character encoding

• Unicode and non-Unicode ODBC drivers

• Driver Manager and Unicode encoding on UNIX/Linux

• Character encoding in the odbc.ini and odbcinst.ini files

Internationalization and Localization
Software that has been designed for internationalization is able to manage different linguistic and cultural
conventions transparently and without modification. The same binary copy of an application should run on any
localized version of an operating system without requiring source code changes.

Software that has been designed for localization includes language translation (such as text messages, icons,
and buttons), cultural data (such as dates, times, and currency), and other components (such as input methods
and spell checkers) for meeting regional market requirements.

Properly designed applications can accommodate a localized interface without extensive modification. The
applications can be designed, first, to run internationally, and, second, to accommodate the language- and
cultural-specific elements of a designated locale.

61Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Locale

A locale represents the language and cultural data chosen by the user and dynamically loaded into memory
at runtime. The locale settings are applied to the operating system and to subsequent application launches.

While language is a fairly straightforward item, cultural data is a little more complex. Dates, numbers, and
currency are all examples of data that is formatted according to cultural expectations. Because cultural
preferences are bound to a geographic area, country is an important element of locale. Together these two
elements (language and country) provide a precise context in which information can be presented. Locale
presents information in the language and form that is best understood and appreciated by the local user.

Language

A locale's language is specified by the ISO 639 standard. The following table lists some commonly used
language codes.

LanguageLanguage Code

Englishen

Dutchnl

Frenchfr

Spanishes

Chinesezh

Japaneseja

Vietnamesevi

Because language is correlated with geography, a language code might not capture all the nuances of usage
in a particular area. For example, French and Canadian French may use different phrases and terms to mean
different things even though basic grammar and vocabulary are the same. Language is only one element of
locale.

Country

The locale's country identifier is also specified by an ISO standard, ISO 3166, which describes valid two-letter
codes for all countries. ISO 3166 defines these codes in uppercase letters. The following table lists some
commonly used country codes.

CountryCountry Code

United StatesUS

FranceFR

IrelandIE

CanadaCA

MexicoMX

The country code provides more contextual information for a locale and affects a language's usage, word
spelling, and collation rules.

Progress DataDirect for ODBC Drivers: Reference: Version November 202062

Chapter 7: Internationalization, localization, and Unicode

Variant

A variant is an optional extension to a locale. It identifies a custom locale that is not possible to create with just
language and country codes. Variants can be used by anyone to add additional context for identifying a locale.
The locale en_US represents English (United States), but en_US_CA represents even more information and
might identify a locale for English (California, U.S.A). Operating system or software vendors can use these
variants to create more descriptive locales for their specific environments.

Unicode character encoding
In addition to locale, the other major component of internationalizing software is the use of the Universal
Codeset, or Unicode. Most developers know that Unicode is a standard encoding that can be used to support
multilingual character sets. Unfortunately, understanding Unicode is not as simple as its name would indicate.
Software developers have used a number of character encodings, from ASCII to Unicode, to solve the many
problems that arise when developing software applications that can be used worldwide.

Background

Most legacy computing environments have used ASCII character encoding developed by the ANSI standards
body to store and manipulate character strings inside software applications. ASCII encoding was convenient
for programmers because each ASCII character could be stored as a byte. The initial version of ASCII used
only 7 of the 8 bits available in a byte, which meant that applications could use only 128 different characters.
This version of ASCII could not account for European characters and was completely inadequate for Asian
characters. Using the eighth bit to extend the total range of characters to 256 added support for most European
characters. Today, ASCII refers to either the 7-bit or 8-bit encoding of characters.

As the need increased for applications with additional international support, ANSI again increased the functionality
of ASCII by developing an extension to accommodate multilingual software. The extension, known as the
Double-Byte Character Set (DBCS), allowed existing applications to function without change, but provided for
the use of additional characters, including complex Asian characters. With DBCS, characters map to either
one byte (for example, American ASCII characters) or two bytes (for example, Asian characters). The DBCS
environment also introduced the concept of an operating system code page that identified how characters
would be encoded into byte sequences in a particular computing environment. DBCS encoding provided a
cross-platform mechanism for building multilingual applications.

The DataDirect for ODBC UNIX, Linux, and macOS drivers can use double-byte character sets. The drivers
normally use the character set defined by the default locale "C" unless explicitly pointed to another character
set. The default locale "C" corresponds to the 7-bit US-ASCII character set. Use the following procedure to set
the locale to a different character set:

1. Add the following line at the beginning of applications that use double-byte character sets:

setlocale (LC_ALL, "");

This is a standard function for UNIX-based platforms. It selects the character set indicated by the environment
variable LANG as the one to be used by X/Open compliant, character-handling functions. If this line is not
present, or if LANG is not set or is set to NULL, the default locale "C" is used.

2. Set the LANG environment variable to the appropriate character set. The command locale -a can be
used to display all supported character sets on your system.

For more information, refer to the man pages for "locale" and "setlocale."

63Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Unicode character encoding

Using a DBCS, however, was not ideal; many developers felt that there was a better way to solve the problem.
A group of leading software companies joined forces to form the Unicode Consortium.Together, they produced
a new solution to building worldwide applications—Unicode. Unicode was originally designed as a fixed-width,
uniform two-byte designation that could represent all modern scripts without the use of code pages.The Unicode
Consortium has continued to evaluate new characters, and the current number of supported characters is over
109,000.

Although it seemed to be the perfect solution to building multilingual applications, Unicode started off with a
significant drawback—it would have to be retrofitted into existing computing environments. To use the new
paradigm, all applications would have to change. As a result, several standards-based transliterations were
designed to convert two-byte fixed Unicode values into more appropriate character encodings, including, among
others, UTF-8, UCS-2, UTF-16, and UTF-32.

UTF-8 is a standard method for transforming Unicode values into byte sequences that maintain transparency
for all ASCII codes. UTF-8 is recognized by the Unicode Consortium as a mechanism for transforming Unicode
values and is popular for use with HTML, XML, and other protocols. UTF-8 is, however, currently used primarily
on AIX, HP-UX, Solaris, and Linux.

UCS-2 encoding is a fixed, two-byte encoding sequence and is a method for transforming Unicode values into
byte sequences. It is the standard for Windows 95, Windows 98, Windows Me, and Windows NT.

UTF-16 is a superset of UCS-2, with the addition of some special characters in surrogate pairs. UTF-16 is the
standard encoding for Windows 2000, Windows XP, Windows Vista, Windows Server 2003 and higher, and
Windows 7 and higher. Microsoft recommends using UTF-16 for new applications.

UTF-32 encoding is a fixed-width, 4 byte method for transforming Unicode values into byte sequences. It is
capable of defining all Unicode characters and is common for macOS platforms.

Refer to "Unicode Support" in the user's guide of your driver to determine which encoding formats your driver
supports.

Unicode support in databases

Recently, database vendors have begun to support Unicode data types natively in their systems. With Unicode
support, one database can hold multiple languages. For example, a large multinational corporation could store
expense data in the local languages for the Japanese, U.S., English, German, and French offices in one
database.

Not surprisingly, the implementation of Unicode data types varies from vendor to vendor. For example, the
Microsoft SQL Server 2000 implementation of Unicode provides data in UTF-16 format, while Oracle provides
Unicode data types in UTF-8 and UTF-16 formats. A consistent implementation of Unicode not only depends
on the operating system, but also on the database itself.

Unicode support in ODBC

Prior to the ODBC 3.5 standard, all ODBC access to function calls and string data types was through ANSI
encoding (either ASCII or DBCS). Applications and drivers were both ANSI-based.

The ODBC 3.5 standard specified that the ODBC Driver Manager be capable of mapping both Unicode function
calls and string data types to ANSI encoding as transparently as possible.This meant that ODBC 3.5-compliant
Unicode applications could use Unicode function calls and string data types with ANSI drivers because the
Driver Manager could convert them to ANSI. Because of character limitations in ANSI, however, not all
conversions are possible.

The ODBC Driver Manager version 3.5 and later, therefore, supports the following configurations:

• ANSI application with an ANSI driver

Progress DataDirect for ODBC Drivers: Reference: Version November 202064

Chapter 7: Internationalization, localization, and Unicode

• ANSI application with a Unicode driver

• Unicode application with a Unicode driver

• Unicode application with an ANSI driver

A Unicode application can work with an ANSI driver because the Driver Manager provides limited
Unicode-to-ANSI mapping. The Driver Manager makes it possible for a pre-3.5 ANSI driver to work with a
Unicode application. What distinguishes a Unicode driver from a non-Unicode driver is the Unicode driver's
capacity to interpret Unicode function calls without the intervention of the Driver Manager, as described in the
following section.

Unicode and non-Unicode ODBC drivers
The way in which a driver handles function calls from a Unicode application determines whether it is considered
a "Unicode driver."

Function calls

Instead of the standard ANSI SQL function calls, such as SQLConnect, Unicode applications use "W" (wide)
function calls, such as SQLConnectW. If the driver is a true Unicode driver, it can understand "W" function
calls and the Driver Manager can pass them through to the driver without conversion to ANSI. The DataDirect
for ODBC drivers that support "W" function calls are:

• Aha!

• Amazon Redshift Wire Protocol

• Apache Hive

• Apache Cassandra

• Apache Spark SQL Wire Protocol

• Autonomous REST Connector

• GitHub

• Google Analytics

• Google BigQuery

• Greenplum Wire Protocol

• HubSpot

• IBM DB2 Wire Protocol

• Impala Wire Protocol

• Microsoft Dynamics 365

• Microsoft SharePoint

• MongoDB

• MySQL Wire Protocol

• Oracle

• Oracle Wire Protocol

65Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Unicode and non-Unicode ODBC drivers

• Oracle Service Cloud

• PostgreSQL Wire Protocol

• Progress OpenEdge Wire Protocol

• Salesforce

• SAP S/4HANA

• SQL Server Wire Protocol

• SQL Server Legacy Wire Protocol (UNIX only)

• Sybase Wire Protocol

• Sybase IQ Wire Protocol

• TeamCity

• Teradata

• XML

If a driver is a non-Unicode driver, it cannot understand W function calls, and the Driver Manager must convert
them to ANSI calls before sending them to the driver. The Driver Manager determines the ANSI encoding
system to which it must convert by referring to a code page. On Windows, this reference is to the Active Code
Page. On non-Windows platforms, it is to the IANAAppCodePage connection string attribute, part of the
odbc.ini file.

The following examples illustrate these conversion streams for the Progress DataDirect for ODBC drivers. The
Driver Manager on UNIX and Linux determines the type of Unicode encoding of both the application and the
driver, and performs conversions when the application and driver use different types of encoding. This
determination is made by checking two ODBC attributes: SQL_ATTR_APP_UNICODE_TYPE and
SQL_ATTR_DRIVER_UNICODE_TYPE, which can be set for either the environment, using SQLSetEnvAttr,
or the connection, using SQLSetConnectAttr. "Driver Manager and Unicode Encoding on UNIX/Linux" describes
in detail how this is done.

See also
Driver Manager and Unicode encoding on UNIX/Linux on page 70

Unicode application with a non-Unicode driver
An operation involving a Unicode application and a non-Unicode driver incurs more overhead because function
conversion is involved.

Windows

1. The Unicode application sends UCS-2/UTF-16 function calls to the Driver Manager.

2. The Driver Manager converts the function calls from UCS-2/UTF-16 to ANSI.The type of ANSI is determined
by the Driver Manager through reference to the client machine’s Active Code Page.

3. The Driver Manager sends the ANSI function calls to the non-Unicode driver.

4. The driver returns ANSI argument values to the Driver Manager.

5. The Driver Manager converts the function calls from ANSI to UCS-2/UTF-16 and returns these converted
calls to the application.

UNIX and Linux

Progress DataDirect for ODBC Drivers: Reference: Version November 202066

Chapter 7: Internationalization, localization, and Unicode

1. The Unicode application sends function calls to the Driver Manager. The Driver Manager expects the string
arguments in these function calls to be UTF-8 or UTF-16 based on the value of the
SQL_ATTR_APP_UNICODE_TYPE attribute. Note that the SQL_ATTR_APP_UNICODE_TYPE attribute
can be set for the environment, using SQLSetEnvAttr, or the connection, using SQLSetConnectAttr.

2. The Driver Manager converts the function calls from UTF-8 or UTF-16 to ANSI. The type of ANSI is
determined by the Driver Manager through reference to the client machine’s value for the IANAAppCodePage
connection string attribute.

3. The Driver Manager sends the converted ANSI function calls to the non-Unicode driver.

4. The driver returns ANSI argument values to the Driver Manager.

5. The Driver Manager converts the function calls from ANSI to UTF-8 or UTF-16 and returns these converted
calls to the application.

macOS

On macOS, this scenario does not apply. All currently available drivers are Unicode drivers.

Unicode application with a Unicode driver
An operation involving a Unicode application and a Unicode driver that use the same Unicode encoding is
efficient because no function conversion is involved. If the application and the driver each use different types
of encoding, there is some conversion overhead. See "Driver Manager and Unicode Encoding on UNIX/Linux"
for details.

Windows

1. The Unicode application sends UCS-2 or UTF-16 function calls to the Driver Manager.

2. The Driver Manager does not have to convert the UCS-2/UTF-16 function calls to ANSI. It passes the
Unicode function call to the Unicode driver.

3. The driver returns UCS-2/UTF-16 argument values to the Driver Manager.

4. The Driver Manager returns UCS-2/UTF-16 function calls to the application.

UNIX and Linux

1. The Unicode application sends function calls to the Driver Manager. The Driver Manager expects the string
arguments in these function calls to be UTF-8 or UTF-16 based on the value of the
SQL_ATTR_APP_UNICODE_TYPE attribute. Note that the SQL_ATTR_APP_UNICODE_TYPE attribute
can be set for the environment, using SQLSetEnvAttr, or the connection, using SQLSetConnectAttr.

2. The Driver Manager passes Unicode function calls to the Unicode driver.The Driver Manager has to perform
function call conversions if the SQL_ATTR_APP_UNICODE_TYPE is different from the
SQL_ATTR_DRIVER_UNICODE_TYPE.

3. The driver returns argument values to the Driver Manager. Whether these are UTF-8 or UTF-16 argument
values is based on the value of the SQL_ATTR_DRIVER_UNICODE_TYPE attribute.

4. The Driver Manager returns appropriate function calls to the application based on the
SQL_ATTR_APP_UNICODE_TYPE attribute value. The Driver Manager has to perform function call
conversions if the SQL_ATTR_DRIVER_UNICODE_TYPE value is different from the
SQL_ATTR_APP_UNICODE_TYPE value.

macOS

67Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Unicode and non-Unicode ODBC drivers

1. The Unicode application sends UTF-32 function calls to the Driver Manager.

2. The Driver Manager does not have to convert the UTF-32 function calls to ANSI. It passes the Unicode
function call to the Unicode driver.

3. The driver returns UTF-32 argument values to the Driver Manager.

4. The Driver Manager returns UTF-32 function calls to the application.

See also
Driver Manager and Unicode encoding on UNIX/Linux on page 70

Data

ODBC C data types are used to indicate the type of C buffers that store data in the application. This is in
contrast to SQL data types, which are mapped to native database types to store data in a database (data store).
ANSI applications bind to the C data type SQL_C_CHAR and expect to receive information bound in the same
way. Similarly, most Unicode applications bind to the C data type SQL_C_WCHAR (wide data type) and expect
to receive information bound in the same way. Any ODBC 3.5-compliant Unicode driver must be capable of
supporting SQL_C_CHAR and SQL_C_WCHAR so that it can return data to both ANSI and Unicode applications.

When the driver communicates with the database, it must use ODBC SQL data types, such as SQL_CHAR
and SQL_WCHAR, that map to native database types. In the case of ANSI data and an ANSI database, the
driver receives data bound to SQL_C_CHAR and passes it to the database as SQL_CHAR. The same is true
of SQL_C_WCHAR and SQL_WCHAR in the case of Unicode data and a Unicode database.

When data from the application and the data stored in the database differ in format, for example, ANSI application
data and Unicode database data, conversions must be performed. The driver cannot receive SQL_C_CHAR
data and pass it to a Unicode database that expects to receive a SQL_WCHAR data type. The driver or the
Driver Manager must be capable of converting SQL_C_CHAR to SQL_WCHAR, and vice versa.

The simplest cases of data communication are when the application, the driver, and the database are all of
the same type and encoding, ANSI-to-ANSI-to-ANSI or Unicode-to-Unicode-to-Unicode. There is no data
conversion involved in these instances.

When a difference exists between data types, a conversion from one type to another must take place at the
driver or Driver Manager level, which involves additional overhead. The type of driver determines whether
these conversions are performed by the driver or the Driver Manager. "Driver Manager and Unicode Encoding
on UNIX/Linux" describes how the Driver Manager determines the type of Unicode encoding of the application
and driver.

The following sections discuss two basic types of data conversion in the Progress DataDirect ODBC drivers
and the Driver Manager. How an individual driver exchanges different types of data with a particular database
at the database level is beyond the scope of this discussion.

See also
Driver Manager and Unicode encoding on UNIX/Linux on page 70

Unicode driver
The Unicode driver, not the Driver Manager, must convert SQL_C_CHAR (ANSI) data to SQL_WCHAR
(Unicode) data, and vice versa, as well as SQL_C_WCHAR (Unicode) data to SQL_CHAR (ANSI) data, and
vice versa.

Progress DataDirect for ODBC Drivers: Reference: Version November 202068

Chapter 7: Internationalization, localization, and Unicode

The driver must use client code page information (Active Code Page on Windows and IANAAppCodePage
attribute on UNIX/Linux/macOS) to determine which ANSI code page to use for the conversions. The Active
Code Page or IANAAppCodePage must match the database default character encoding; if it does not, conversion
errors are possible.

ANSI driver
The Driver Manager, not the ANSI driver, must convert SQL_C_WCHAR (Unicode) data to SQL_CHAR (ANSI)
data, and vice versa (see "Unicode Support in ODBC" for a detailed discussion). This is necessary because
ANSI drivers do not support any Unicode ODBC types.

The Driver Manager must use client code page information (Active Code Page on Windows and the
IANAAppCodePage attribute on UNIX/Linux/macOS) to determine which ANSI code page to use for the
conversions.The Active Code Page or IANAAppCodePage must match the database default character encoding.
If not, conversion errors are possible.

See also
Unicode support in ODBC on page 64

Default Unicode mapping

The following table shows the default Unicode mapping for an application’s SQL_C_WCHAR variables.

Default Unicode MappingPlatform

UCS-2/UTF-16Windows

UTF-8AIX

UTF-8HP-UX

UTF-8Solaris

UTF-8Linux

UTF-32macOS

Connection attribute for Unicode
If you do not want to use the default Unicode mappings for SQL_C_WCHAR, a connection attribute is available
to override the default mappings. This attribute determines how character data is converted and presented to
an application and the database.

DescriptionAttribute

Sets the SQL_C_WCHAR type for parameter and
column binding to the Unicode type, either

SQL_ATTR_APP_WCHAR_TYPE (1061)

SQL_DD_CP_UTF16 (default for Windows) or
SQL_DD_CP_UTF8 (default for UNIX/Linux).

You can set this attribute before or after you connect. After this attribute is set, all conversions are made based
on the character set specified.

For example:

rc = SQLSetConnectAttr (hdbc, SQL_ATTR_APP_WCHAR_TYPE,
(void *)SQL_DD_CP_UTF16, SQL_IS_INTEGER);

69Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Unicode and non-Unicode ODBC drivers

SQLGetConnectAttr and SQLSetConnectAttr for the SQL_ATTR_APP_WCHAR_TYPE attribute return a SQL
State of HYC00 for drivers that do not support Unicode.

This connection attribute and its valid values can be found in the file qesqlext.h, which is installed with the
product.

Note: On Mac Platforms, the iODBC Driver Manager supports only UTF-32. As a result, this attribute is not
currently supported.

Driver Manager and Unicode encoding on UNIX/Linux

Unicode ODBC drivers on UNIX and Linux can use UTF-8 or UTF-16 encoding. To use a single UTF-8 or
UTF-16 application with either a UTF-8 or UTF-16 driver, the Driver Manager must be able to determine with
which type of encoding the application and driver use and, if necessary, convert them accordingly.

To make this determination, the Driver Manager supports a set of ODBC attributes that can be set for the
environment or the connection. If your application uses both UTF-8 and UTF-16 drivers in the same environment,
encoding should be set for the connection only; otherwise, either method can be used.

• To configure the encoding type for the environment, set the ODBC environment attributes
SQL_ATTR_APP_UNICODE_TYPE and SQL_ATTR_DRIVER_UNICODE_TYPE using SQLSetEnvAttr.

• To configure the encoding for the connection only, set the ODBC connection attribute
SQL_ATTR_APP_UNICODE_TYPE and SQL_ATTR_DRIVER_UNICODE_TYPE using SQLSetConnectAttr.

The attributes support values of SQL_DD_CP_UTF8 and SQL_DD_CP_UTF16. The default value is
SQL_DD_CP_UTF8.

Note: You must specify a value for SQL_ATTR_DRIVER_UNICODE_TYPE when using third-party drivers.
However, for DataDirect drivers, the driver manager detects the Unicode type for the driver by default.

The Driver Manager performs the following steps before actually connecting to the driver.

1. Determine the application Unicode type: Applications that use UTF-16 encoding for their string types need
to set SQL_ATTR_APP_UNICODE_TYPE accordingly at connection, or, if setting the encoding type for
the environment, before connecting to any driver. When the Driver Manager reads this attribute, it expects
all string arguments to the ODBC "W" functions to be in the specified Unicode format. This attribute also
indicates how the SQL_C_WCHAR buffers must be encoded.

2. Determine the driver Unicode type: The Driver Manager must determine through which Unicode encoding
the driver supports its "W" functions. This is done as follows:

a. SQLGetEnvAttr(SQL_ATTR_DRIVER_UNICODE_TYPE) or SQLGetConnectATTR
(SQL_ATTR_DRIVER_UNICODE_TYPE) is called in the driver by the Driver Manager. The driver, if
capable, returns either SQL_DD_CP_UTF16 or SQL_DD_CP_UTF8 to indicate to the Driver Manager
which encoding it expects.

b. If the preceding call to SQLGetEnvAttr fails, the Driver Manager looks either in the Data Source section
of the odbc.ini specified by the connection string or in the connection string itself for a connection

Progress DataDirect for ODBC Drivers: Reference: Version November 202070

Chapter 7: Internationalization, localization, and Unicode

option named DriverUnicodeType. Valid values for this option are 1 (UTF-16) or 2 (UTF-8). The Driver
Manager assumes that the Unicode encoding of the driver corresponds to the value specified.

c. If neither of the preceding attempts are successful, the Driver Manager assumes that the Unicode
encoding of the driver is UTF-8.

3. Determine if the driver supports SQL_ATTR_WCHAR_TYPE: SQLSetConnectAttr
(SQL_ATTR_WCHAR_TYPE, x) is called in the driver by the Driver Manager, where x is either
SQL_DD_CP_UTF8 or SQL_DD_CP_UTF16, depending on the value of the
SQL_ATTR_APP_UNICODE_TYPE setting. If the driver returns any error on this call to SQLSetConnectAttr,
the Driver Manager assumes that the driver does not support this connection attribute.

If an error occurs, the Driver Manager returns a warning. The Driver Manager does not convert all bound
parameter data from the application Unicode type to the driver Unicode type specified by
SQL_ATTR_DRIVER_UNICODE_TYPE. Neither does it convert all data bound as SQL_C_WCHAR to the
application Unicode type specified by SQL_ATTR_APP_UNICODE_TYPE.

Based on the information it has gathered prior to connection, the Driver Manager either does not have to convert
function calls, or, before calling the driver, it converts to either UTF-8 or UTF-16 all string arguments to calls
to the ODBC "W" functions.

References

The Java Tutorials, http://docs.oracle.com/javase/tutorial/i18n/index.html

Unicode Support in the Solaris Operating Environment, May 2000, Sun Microsystems, Inc., 901 San Antonio
Road, Palo Alto, CA 94303-4900

Character encoding in the odbc.ini and odbcinst.ini
files

The odbc.ini and odbcinst.ini files can use ANSI or UTF-8 encoding. To ensure encoding compatibility
between these files and the application, the Driver Manager converts encoding when necessary. This allows
applications with different encoding to write to or read from the odbc.ini or odbcinst.ini file using the
following functions:

ANSI functions:

• SQLWritePrivateProfileString

• SQLGetPrivateProfileString

Unicode (wide or "W") functions:

• SQLWritePrivateProfileStringW

• SQLGetPrivateProfileStringW

For the Driver Manager to accomplish this task, it must determine the encoding format your application and
file use. How the Driver Manager makes this determination is dependent on the encoding of the function called
by the application.

71Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Character encoding in the odbc.ini and odbcinst.ini files

http://docs.oracle.com/javase/tutorial/i18n/index.html

When a Unicode function is called, the Driver Manager assumes that the odbc.ini and odbcinst.ini files
use UTF-8 encoding, while encoding for the application is determined by the ODBC_App_Unicode_Type
variable in the system environment:

• If the variable is set to ODBC_App_Unicode_Type=1, the Driver Manager expects that application uses
input and output strings encoded as UTF-16. When the application calls SQLWritePrivateProfileStringW,
the Driver Manager converts UTF-16 input strings and writes them as UTF-8 in the file.When the application
calls SQLGetPrivateProfileStringW, the Driver Manager returns the requested values using UTF-16 encoding.

• If any other value is specified for ODBC_App_Unicode_Type, or if the variable is not defined, the Driver
Manager assumes that the application and file use UTF-8. When this occurs, the Driver Manager does not
convert strings passed between the application and file.

When an ANSI function is called, the Driver Manager assumes that application and file use ANSI encoding. In
this scenario, the Driver Manger does not convert strings passed between the application and file.

For more information about the odbc.ini and odbcinst.ini files, refer to "Configuring the Product on
UNIX/Linux" in the user's guide for you driver.

Progress DataDirect for ODBC Drivers: Reference: Version November 202072

Chapter 7: Internationalization, localization, and Unicode

8
Designing ODBC applications for
performance optimization

Developing performance-oriented ODBC applications is not easy. Microsoft’s ODBC Programmer’s Reference
does not provide information about system performance. In addition, ODBC drivers and the ODBC driver
manager do not return warnings when applications run inefficiently. This chapter contains some general
guidelines that have been compiled by examining the ODBC implementations of numerous shipping ODBC
applications. These guidelines include:

• Use catalog functions appropriately

• Retrieve only required data

• Select functions that optimize performance

• Manage connections and updates

Following these general rules will help you solve some common ODBC performance problems, such as those
listed in the following table.

Table 13: Common Performance Problems Using ODBC Applications

See guidelines in...SolutionProblem

"Using Catalog Functions"Reduce network traffic.Network communication is slow.

"Using Catalog Functions"

"Selecting ODBC Functions"

Simplify queries.The process of evaluating complex
SQL queries on the database server
is slow and can reduce concurrency.

73Progress DataDirect for ODBC Drivers: Reference: Version November 2020

See guidelines in...SolutionProblem

"Retrieving Data"

"Selecting ODBC Functions"

Optimize
application-to-driver
interaction.

Excessive calls from the application
to the driver slow performance.

"Managing Connections and Updates"Limit disk input/output.Disk I/O is slow.

For details, see the following topics:

• Using catalog functions

• Retrieving data

• Selecting ODBC functions

• Managing connections and updates

Using catalog functions
Because catalog functions, such as those listed here, are slow compared to other ODBC functions, their frequent
use can impair system performance:

• SQLColumns

• SQLForeignKeys

• SQLGetTypeInfo

• SQLSpecialColumns

• SQLStatistics

• SQLTables

SQLGetTypeInfo is included in this list of expensive ODBC functions because many drivers must query the
server to obtain accurate information about which types are supported (for example, to find dynamic types
such as user defined types).

Caching information to minimize the use of catalog functions

To return all result column information mandated by the ODBC specification, a driver may have to perform
multiple queries, joins, subqueries, or unions to return the required result set for a single call to a catalog
function. These particular elements of the SQL language are performance expensive.

Although it is almost impossible to write an ODBC application without catalog functions, their use should be
minimized. By caching information, applications can avoid multiple executions.

For example, call SQLGetTypeInfo once in the application and cache the elements of the result set that your
application depends on. It is unlikely that any application uses all elements of the result set generated by a
catalog function, so the cached information should not be difficult to maintain.

Progress DataDirect for ODBC Drivers: Reference: Version November 202074

Chapter 8: Designing ODBC applications for performance optimization

Avoiding search patterns

Passing NULL arguments or search patterns to catalog functions generates time-consuming queries. In addition,
network traffic potentially increases because of unwanted results. Always supply as many non-NULL arguments
to catalog functions as possible. Because catalog functions are slow, applications should invoke them efficiently.
Any information that the application can send the driver when calling catalog functions can result in improved
performance and reliability.

For example, consider a call to SQLTables where the application requests information about the table
"Customers." Often, this call is coded as shown, using as many NULL arguments as possible:

rc = SQLTables (hstmt, NULL, 0, NULL, 0, "Customers", SQL_NTS, NULL, 0);

A driver processes this SQLTables call into SQL that looks like this:

SELECT ... FROM SysTables WHERE TableName = ’Customers’
UNION ALL
SELECT ... FROM SysViews WHERE ViewName = ’Customers’
UNION ALL
SELECT ... FROM SysSynonyms WHERE SynName = ’Customers’ ORDER BY ...

In our example, the application provides scant information about the object for which information was requested.
Suppose three "Customers" tables were returned in the result set: the first table owned by the user named
Beth, the second owned by the sales department, and the third a view created by management.

It may not be obvious to the end user which table to choose. If the application had specified the OwnerName
argument in the SQLTables call, only one table would be returned and performance would improve. Less
network traffic would be required to return only one result row and unwanted rows would be filtered by the
database. In addition, if the TableType argument was supplied, the SQL sent to the server can be optimized
from a three-query union into a single Select statement as shown:

SELECT ... FROM SysTables WHERE TableName = 'Customers' AND Owner = 'Beth'

Using a dummy query to determine table characteristics

Avoid using SQLColumns to determine characteristics about a table. Instead, use a dummy query with
SQLDescribeCol.

Consider an application that allows the user to choose the columns that will be selected. Should the application
use SQLColumns to return information about the columns to the user or prepare a dummy query and call
SQLDescribeCol?

Case 1: SQLColumns Method

rc = SQLColumns (... "UnknownTable" ...);
// This call to SQLColumns will generate a query to the system catalogs...
// possibly a join which must be prepared, executed, and produce a result set
rc = SQLBindCol (...);
rc = SQLExtendedFetch (...);
// user must retrieve N rows from the server
// N = # result columns of UnknownTable
// result column information has now been obtained

Case 2: SQLDescribeCol Method

// prepare dummy query
rc = SQLPrepare (... "SELECT * FROM UnknownTable WHERE 1 = 0" ...);
// query is never executed on the server - only prepared
rc = SQLNumResultCols (...);
for (irow = 1; irow <= NumColumns; irow++) {

75Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Using catalog functions

 rc = SQLDescribeCol (...)
 // + optional calls to SQLColAttributes
 }
// result column information has now been obtained
// Note we also know the column ordering within the table!
// This information cannot be assumed from the SQLColumns example.

In both cases, a query is sent to the server, but in Case 1, the query must be evaluated and form a result set
that must be sent to the client. Clearly, Case 2 is the better performing model.

To complicate this discussion, let us consider a database server that does not natively support preparing a
SQL statement.The performance of Case 1 does not change, but the performance of Case 2 improves slightly
because the dummy query is evaluated before being prepared. Because the Where clause of the query always
evaluates to FALSE, the query generates no result rows and should execute without accessing table data.
Again, for this situation, Case 2 outperforms Case 1.

Retrieving data
To retrieve data efficiently, return only the data that you need, and choose the most efficient method of doing
so. The guidelines in this section will help you optimize system performance when retrieving data with ODBC
applications.

Retrieving long data

Because retrieving long data across the network is slow and resource-intensive, applications should not request
long data (SQL_LONGVARCHAR, SQL_WLONGVARCHAR, and SQL_LONGVARBINARY data) unless it is
necessary.

Most users do not want to see long data. If the user does need to see these result items, the application can
query the database again, specifying only long columns in the select list. This technique allows the average
user to retrieve the result set without having to pay a high performance penalty for network traffic.

Although the best approach is to exclude long data from the select list, some applications do not formulate the
select list before sending the query to the ODBC driver (that is, some applications simply SELECT * FROM
table_name ...). If the select list contains long data, the driver must retrieve that data at fetch time even if
the application does not bind the long data in the result set. When possible, use a technique that does not
retrieve all columns of the table.

Reducing the size of data retrieved

Sometimes, long data must be retrieved. When this is the case, remember that most users do not want to see
100 KB, or more, of text on the screen.

To reduce network traffic and improve performance, you can reduce the size of data being retrieved to some
manageable limit by calling SQLSetStmtAttr with the SQL_ATTR_MAX_LENGTH option.

Eliminating SQL_LONGVARCHAR, SQL_WLONGVARCHAR, and SQL_LONGVARBINARY data from the
result set is ideal for optimizing performance.

Many application developers mistakenly assume that if they call SQLGetData with a container of size x that
the ODBC driver only retrieves x bytes of information from the server. Because SQLGetData can be called
multiple times for any one column, most drivers optimize their network use by retrieving long data in large
chunks and then returning it to the user when requested. For example:

Progress DataDirect for ODBC Drivers: Reference: Version November 202076

Chapter 8: Designing ODBC applications for performance optimization

char CaseContainer[1000];
...
rc = SQLExecDirect (hstmt, "SELECT CaseHistory FROM Cases WHERE CaseNo = 71164", SQL_NTS);
...
rc = SQLFetch (hstmt);
rc = SQLGetData (hstmt, 1, CaseContainer,(SWORD) sizeof(CaseContainer), ...);

At this point, it is more likely that an ODBC driver will retrieve 64 KB of information from the server instead of
1 KB. In terms of network access, one 64-KB retrieval is less expensive than 64 retrievals of 1 KB. Unfortunately,
the application may not call SQLGetData again; therefore, the first and only retrieval of CaseHistory would be
slowed by the fact that 64 KB of data must be sent across the network.

Many ODBC drivers allow you to limit the amount of data retrieved across the network by supporting the
SQL_MAX_LENGTH attribute.This attribute allows the driver to communicate to the database server that only
x bytes of data are relevant to the client. The server responds by sending only the first x bytes of data for all
result columns. This optimization substantially reduces network traffic and improves client performance. The
previous example returned only one row, but consider the case where 100 rows are returned in the result
set—the performance improvement would be substantial.

Using bound columns

Retrieving data through bound columns (SQLBindCol) instead of using SQLGetData reduces the ODBC call
load and improves performance.

Consider the following code fragment:
rc = SQLExecDirect (hstmt, "SELECT <20 columns> FROM Employees WHERE HireDate >= ?", SQL_NTS);
do {
 rc = SQLFetch (hstmt);
 // call SQLGetData 20 times
} while ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS_WITH_INFO));

Suppose the query returns 90 result rows. In this case, 1891 ODBC calls are made (20 calls to SQLGetData
x 90 result rows + 91 calls to SQLFetch).

Consider the same scenario that uses SQLBindCol instead of SQLGetData:
rc = SQLExecDirect (hstmt, "SELECT <20 columns> FROM Employees WHERE HireDate >= ?", SQL_NTS);
// call SQLBindCol 20 times
do {
rc = SQLFetch (hstmt);
} while ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS_WITH_INFO));

The number of ODBC calls made is reduced from 1891 to 111 (20 calls to SQLBindCol + 91 calls to SQLFetch).
In addition to reducing the call load, many drivers optimize how SQLBindCol is used by binding result information
directly from the database server into the user’s buffer. That is, instead of the driver retrieving information into
a container and then copying that information to the user’s buffer, the driver simply requests the information
from the server be placed directly into the user’s buffer.

Using SQLExtendedFetch instead of SQLFetch

Use SQLExtendedFetch to retrieve data instead of SQLFetch. The ODBC call load decreases (resulting in
better performance) and the code is less complex (resulting in more maintainable code).

Most ODBC drivers now support SQLExtendedFetch for forward only cursors; yet, most ODBC applications
use SQLFetch to retrieve data. Consider the examples in "Using Bound Columns", this time using
SQLExtendedFetch instead of SQLFetch:

rc = SQLSetStmtOption (hstmt, SQL_ROWSET_SIZE, 100);
// use arrays of 100 elements
rc = SQLExecDirect (hstmt, "SELECT <20 columns> FROM Employees WHERE HireDate >= ?", SQL_NTS);
// call SQLBindCol 1 time specifying row-wise binding
do {

77Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Retrieving data

 rc = SQLExtendedFetch (hstmt, SQL_FETCH_NEXT, 0, &RowsFetched,RowStatus);
} while ((rc == SQL_SUCCESS) || (rc == SQL_SUCCESS_WITH_INFO));

Notice the improvement from the previous examples. The initial call load was 1891 ODBC calls. By choosing
ODBC calls carefully, the number of ODBC calls made by the application has now been reduced to 4 (1
SQLSetStmtOption + 1 SQLExecDirect + 1 SQLBindCol + 1 SQLExtendedFetch). In addition to reducing the
call load, many ODBC drivers retrieve data from the server in arrays, further improving the performance by
reducing network traffic.

For ODBC drivers that do not support SQLExtendedFetch, the application can enable forward-only cursors
using the ODBC cursor library:

(rc=SQLSetConnectOption (hdbc, SQL_ODBC_CURSORS, SQL_CUR_USE_IF_NEEDED);

Although using the cursor library does not improve performance, it should not be detrimental to application
response time when using forward-only cursors (no logging is required). Furthermore, using the cursor library
means that the application can always depend on SQLExtendedFetch being available.This simplifies the code
because the application does not require two algorithms (one using SQLExtendedFetch and one using
SQLFetch).

See also
Using bound columns on page 77

Choosing the right data type

Retrieving and sending certain data types can be expensive. When you are working with data on a large scale,
select the data type that can be processed most efficiently. For example, integer data is processed faster than
floating-point data. Floating-point data is defined according to internal database-specific formats, usually in a
compressed format. The data must be decompressed and converted into a different format so that it can be
processed by the wire protocol.

Selecting ODBC functions
The guidelines in this section will help you select which ODBC functions will give you the best performance.

Using SQLPrepare/SQLExecute and SQLExecDirect

Using SQLPrepare/SQLExecute is not always as efficient as SQLExecDirect. Use SQLExecDirect for queries
that will be executed once and SQLPrepare/SQLExecute for queries that will be executed multiple times.

ODBC drivers are optimized based on the perceived use of the functions that are being executed.
SQLPrepare/SQLExecute is optimized for multiple executions of statements that use parameter markers.
SQLExecDirect is optimized for a single execution of a SQL statement. Unfortunately, more than 75% of all
ODBC applications use SQLPrepare/SQLExecute exclusively.

Consider the case where an ODBC driver implements SQLPrepare by creating a stored procedure on the
server that contains the prepared statement. Creating stored procedures involve substantial overhead, but the
statement can be executed multiple times. Although creating stored procedures is performance-expensive,
execution is minimal because the query is parsed and optimization paths are stored at create procedure time.

Progress DataDirect for ODBC Drivers: Reference: Version November 202078

Chapter 8: Designing ODBC applications for performance optimization

Using SQLPrepare/SQLExecute for a statement that is executed only once results in unnecessary overhead.
Furthermore, applications that use SQLPrepare/SQLExecute for large single execution query batches exhibit
poor performance. Similarly, applications that always use SQLExecDirect do not perform as well as those that
use a logical combination of SQLPrepare/SQLExecute and SQLExecDirect sequences.

Using arrays of parameters

Passing arrays of parameter values for bulk insert operations, for example, with SQLPrepare/SQLExecute and
SQLExecDirect can reduce the ODBC call load and network traffic.To use arrays of parameters, the application
calls SQLSetStmtAttr with the following attribute arguments:

• SQL_ATTR_PARAMSET_SIZE sets the array size of the parameter.

• SQL_ATTR_PARAMS_PROCESSED_PTR assigns a variable filled by SQLExecute, which contains the
number of rows that are actually inserted.

• SQL_ATTR_PARAM_STATUS_PTR points to an array in which status information for each row of parameter
values is returned.

Note: ODBC 3.x replaced the ODBC 2.x call to SQLParamOptions with calls to SQLSetStmtAttr using the
SQL_ATTR_PARAMSET_SIZE, SQL_ATTR_PARAMS_PROCESSED_ARRAY, and
SQL_ATTR_PARAM_STATUS_PTR arguments.

Before executing the statement, the application sets the value of each data element in the bound array. When
the statement is executed, the driver tries to process the entire array contents using one network roundtrip.
For example, let us compare the following examples, Case 1 and Case 2.

Case 1: Executing Prepared Statement Multiple Times
rc = SQLPrepare (hstmt, "INSERT INTO DailyLedger (...) VALUES (?,?,...)", SQL_NTS);
// bind parameters
...
do {
 // read ledger values into bound parameter buffers
 ...
 rc = SQLExecute (hstmt);
 // insert row
} while ! (eof);

Case 2: Using Arrays of Parameters
SQLPrepare (hstmt, " INSERT INTO DailyLedger (...) VALUES (?,?,...)", SQL_NTS);
SQLSetStmtAttr (hstmt, SQL_ATTR_PARAMSET_SIZE, (UDWORD)100, SQL_IS_UINTEGER);
SQLSetStmtAttr (hstmt, SQL_ATTR_PARAMS_PROCESSED_PTR, &rows_processed, SQL_IS_POINTER);
// Specify an array in which to return the status of
// each set of parameters.
SQLSetStmtAttr(hstmt, SQL_ATTR_PARAM_STATUS_PTR, ParamStatusArray, SQL_IS_POINTER);
// pass 100 parameters per execute
// bind parameters
...
do {
 // read up to 100 ledger values into
 // bound parameter buffers
 ...
 rc = SQLExecute (hstmt);
 // insert a group of 100 rows
} while ! (eof);

In Case 1, if there are 100 rows to insert, 101 network roundtrips are required to the server, one to prepare the
statement with SQLPrepare and 100 additional roundtrips for each time SQLExecute is called.

In Case 2, the call load has been reduced from 100 SQLExecute calls to only 1 SQLExecute call. Furthermore,
network traffic is reduced considerably.

79Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Selecting ODBC functions

Using the cursor library

If the driver provides scrollable cursors, do not use the cursor library.The cursor library creates local temporary
log files, which are performance-expensive to generate and provide worse performance than native scrollable
cursors.

The cursor library adds support for static cursors, which simplifies the coding of applications that use scrollable
cursors. However, the cursor library creates temporary log files on the user’s local disk drive to accomplish the
task. Typically, disk I/O is a slow operation. Although the cursor library is beneficial, applications should not
automatically choose to use the cursor library when an ODBC driver supports scrollable cursors natively.

Typically, ODBC drivers that support scrollable cursors achieve high performance by requesting that the
database server produce a scrollable result set instead of emulating the capability by creating log files. Many
applications use:

rc = SQLSetConnectOption (hdbc, SQL_ODBC_CURSORS, SQL_CUR_USE_ODBC);

but should use:

rc = SQLSetConnectOption (hdbc, SQL_ODBC_CURSORS, SQL_CUR_USE_IF_NEEDED);

Managing connections and updates
The guidelines in this section will help you to manage connections and updates to improve system performance
for your ODBC applications.

Managing connections

Connection management is important to application performance. Optimize your application by connecting
once and using multiple statement handles, instead of performing multiple connections. Avoid connecting to
a data source after establishing an initial connection.

Although gathering driver information at connect time is a good practice, it is often more efficient to gather it
in one step rather than two steps. Some ODBC applications are designed to call informational gathering routines
that have no record of already attached connection handles. For example, some applications establish a
connection and then call a routine in a separate DLL or shared library that reattaches and gathers information
about the driver. Applications that are designed as separate entities should pass the already connected HDBC
pointer to the data collection routine instead of establishing a second connection.

Another bad practice is to connect and disconnect several times throughout your application to process SQL
statements. Connection handles can have multiple statement handles associated with them. Statement handles
can provide memory storage for information about SQL statements. Therefore, applications do not need to
allocate new connection handles to process SQL statements. Instead, applications should use statement
handles to manage multiple SQL statements.

You can significantly improve performance with connection pooling, especially for applications that connect
over a network or through the World Wide Web. With connection pooling, closing connections does not close
the physical connection to the database. When an application requests a connection, an active connection
from the connection pool is reused, avoiding the network round trips needed to create a new connection.

Connection and statement handling should be addressed before implementation. Spending time and thoughtfully
handling connection management improves application performance and maintainability.

Progress DataDirect for ODBC Drivers: Reference: Version November 202080

Chapter 8: Designing ODBC applications for performance optimization

Managing commits in transactions

Committing data is extremely disk I/O intensive and slow. If the driver can support transactions, always turn
autocommit off.

What does a commit actually involve? The database server must flush back to disk every data page that
contains updated or new data. This is not a sequential write but a searched write to replace existing data in
the table. By default, autocommit is on when connecting to a data source. Autocommit mode usually impairs
system performance because of the significant amount of disk I/O needed to commit every operation.

Some database servers do not provide an Autocommit mode. For this type of server, the ODBC driver must
explicitly issue a COMMIT statement and a BEGIN TRANSACTION for every operation sent to the server. In
addition to the large amount of disk I/O required to support Autocommit mode, a performance penalty is paid
for up to three network requests for every statement issued by an application.

Although using transactions can help application performance, do not take this tip too far. Leaving transactions
active can reduce throughput by holding locks on rows for long times, preventing other users from accessing
the rows. Commit transactions in intervals that allow maximum concurrency.

Choosing the right transaction model

Many systems support distributed transactions; that is, transactions that span multiple connections. Distributed
transactions are at least four times slower than normal transactions due to the logging and network round trips
necessary to communicate between all the components involved in the distributed transaction. Unless distributed
transactions are required, avoid using them. Instead, use local transactions when possible.

Using positioned updates and deletes

Use positioned updates and deletes or SQLSetPos to update data. Although positioned updates do not apply
to all types of applications, developers should use positioned updates and deletes when it makes sense.
Positioned updates (either through UPDATE WHERE CURRENT OF CURSOR or through SQLSetPos) allow the
developer to signal the driver to "change the data here" by positioning the database cursor at the appropriate
row to be changed. The designer is not forced to build a complex SQL statement, but simply supplies the data
to be changed.

In addition to making the application more maintainable, positioned updates usually result in improved
performance. Because the database server is already positioned on the row for the Select statement in process,
performance-expensive operations to locate the row to be changed are not needed. If the row must be located,
the server typically has an internal pointer to the row available (for example, ROWID).

Using SQLSpecialColumns

Use SQLSpecialColumns to determine the optimal set of columns to use in the Where clause for updating
data. Often, pseudo-columns provide the fastest access to the data, and these columns can only be determined
by using SQLSpecialColumns.

Some applications cannot be designed to take advantage of positioned updates and deletes.These applications
typically update data by forming a Where clause consisting of some subset of the column values returned in
the result set. Some applications may formulate the Where clause by using all searchable result columns or
by calling SQLStatistics to find columns that are part of a unique index. These methods typically work, but can
result in fairly complex queries.

81Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Managing connections and updates

Consider the following example:

rc = SQLExecDirect (hstmt, "SELECT first_name, last_name, ssn, address, city, state, zip
 FROM emp", SQL_NTS);
// fetchdata
...
rc = SQLExecDirect (hstmt, "UPDATE EMP SET ADDRESS = ? WHERE first_name = ? AND last_name
 = ? AND
 ssn = ? AND address = ? AND city = ? AND state = ? AND zip = ?", SQL_NTS);
// fairly complex query

Applications should call SQLSpecialColumns/SQL_BEST_ROWID to retrieve the optimal set of columns
(possibly a pseudo-column) that identifies a given record. Many databases support special columns that are
not explicitly defined by the user in the table definition but are "hidden" columns of every table (for example,
ROWID and TID). These pseudo-columns provide the fastest access to data because they typically point to
the exact location of the record. Because pseudo-columns are not part of the explicit table definition, they are
not returned from SQLColumns. To determine if pseudo-columns exist, call SQLSpecialColumns.

Consider the previous example again:

...
rc = SQLSpecialColumns (hstmt, ’emp’, ...);
...
rc = SQLExecDirect (hstmt, "SELECT first_name, last_name, ssn, address, city, state,
zip, ROWID
 FROM emp", SQL_NTS);
// fetch data and probably "hide" ROWID from the user
...
rc = SQLExecDirect (hstmt, "UPDATE emp SET address = ? WHERE ROWID = ?",SQL_NTS);
// fastest access to the data!

If your data source does not contain special pseudo-columns, the result set of SQLSpecialColumns consists
of columns of the optimal unique index on the specified table (if a unique index exists).Therefore, your application
does not need to call SQLStatistics to find the smallest unique index.

Progress DataDirect for ODBC Drivers: Reference: Version November 202082

Chapter 8: Designing ODBC applications for performance optimization

9
Using indexes

This chapter discusses the ways in which you can improve the performance of database activity using indexes.
It provides general guidelines that apply to most databases. Consult your database vendor’s documentation
for more detailed information.

For details, see the following topics:

• Introduction

• Improving row selection performance

• Indexing multiple fields

• Deciding which indexes to create

• Improving join performance

Introduction
An index is a database structure that you can use to improve the performance of database activity. A database
table can have one or more indexes associated with it.

An index is defined by a field expression that you specify when you create the index. Typically, the field
expression is a single field name, like emp_id. An index created on the emp_id field, for example, contains a
sorted list of the employee ID values in the table. Each value in the list is accompanied by references to the
rows that contain that value.

83Progress DataDirect for ODBC Drivers: Reference: Version November 2020

A database driver can use indexes to find rows quickly. An index on the emp_id field, for example, greatly
reduces the time that the driver spends searching for a particular employee ID value. Consider the following
Where clause:

WHERE EMP_id = 'E10001'

Without an index, the server must search the entire database table to find those rows having an employee ID
of E10001. By using an index on the emp_id field, however, the server can quickly find those rows.

Indexes may improve the performance of SQL statements.You may not notice this improvement with small
tables, but it can be significant for large tables; however, there can be disadvantages to having too many
indexes. Indexes can slow down the performance of some inserts, updates, and deletes when the driver has
to maintain the indexes as well as the database tables. Also, indexes take additional disk space.

Improving row selection performance
For indexes to improve the performance of selections, the index expression must match the selection condition
exactly. For example, if you have created an index whose expression is last_name, the following Select
statement uses the index:

SELECT * FROM emp WHERE last_name = 'Smith'

This Select statement, however, does not use the index:

SELECT * FROM emp WHERE UPPER(last_name) = 'SMITH'

The second statement does not use the index because the Where clause contains UPPER(last_name), which
does not match the index expression last_name. If you plan to use the UPPER function in all your Select
statements and your database supports indexes on expressions, then you should define an index using the
expression UPPER(last_name).

Indexing multiple fields
If you often use Where clauses that involve more than one field, you may want to build an index containing
multiple fields. Consider the following Where clause:

WHERE last_name = 'Smith' AND first_name = 'Thomas'

For this condition, the optimal index field expression is last_name, first_name. This creates a concatenated
index.

Progress DataDirect for ODBC Drivers: Reference: Version November 202084

Chapter 9: Using indexes

Concatenated indexes can also be used for Where clauses that contain only the first of two concatenated fields.
The last_name, first_name index also improves the performance of the following Where clause (even though
no first name value is specified):

last_name = 'Smith'

Consider the following Where clause:

WHERE last_name = 'Smith' AND middle_name = 'Edward' AND first_name = 'Thomas'

If your index fields include all the conditions of the Where clause in that order, the driver can use the entire
index. If, however, your index is on two nonconsecutive fields, for example, last_name and first_name, the
driver can use only the last_name field of the index.

The driver uses only one index when processing Where clauses. If you have complex Where clauses that
involve a number of conditions for different fields and have indexes on more than one field, the driver chooses
an index to use. The driver attempts to use indexes on conditions that use the equal sign as the relational
operator rather than conditions using other operators (such as greater than). Assume you have an index on
the emp_id field as well as the last_name field and the following Where clause:

WHERE emp_id >= 'E10001' AND last_name = 'Smith'

In this case, the driver selects the index on the last_name field.

If no conditions have the equal sign, the driver first attempts to use an index on a condition that has a lower
and upper bound, and then attempts to use an index on a condition that has a lower or upper bound.The driver
always attempts to use the most restrictive index that satisfies the Where clause.

In most cases, the driver does not use an index if the Where clause contains an OR comparison operator. For
example, the driver does not use an index for the following Where clause:

WHERE emp_id >= 'E10001' OR last_name = 'Smith'

Deciding which indexes to create
Before you create indexes for a database table, consider how you will use the table. The most common
operations on a table are:

• Inserting, updating, and deleting rows

• Retrieving rows

If you most often insert, update, and delete rows, then the fewer indexes associated with the table, the better
the performance. This is because the driver must maintain the indexes as well as the database tables, thus
slowing down the performance of row inserts, updates, and deletes. It may be more efficient to drop all indexes
before modifying a large number of rows, and re-create the indexes after the modifications.

If you most often retrieve rows, you must look further to define the criteria for retrieving rows and create indexes
to improve the performance of these retrievals. Assume you have an employee database table and you will
retrieve rows based on employee name, department, or hire date.You would create three indexes—one on
the dept field, one on the hire_date field, and one on the last_name field. Or perhaps, for the retrievals based
on the name field, you would want an index that concatenates the last_name and the first_name fields (see
"Indexing Multiple Fields" for details).

Here are a few rules to help you decide which indexes to create:

• If your row retrievals are based on only one field at a time (for example, dept='D101'), create an index
on these fields.

• If your row retrievals are based on a combination of fields, look at the combinations.

85Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Deciding which indexes to create

• If the comparison operator for the conditions is And (for example, city = 'Raleigh' AND state =
'NC'), then build a concatenated index on the city and state fields. This index is also useful for retrieving
rows based on the city field.

• If the comparison operator is OR (for example, dept = 'D101' OR hire_date > {01/30/89}), an
index does not help performance. Therefore, you need not create one.

• If the retrieval conditions contain both AND and OR comparison operators, you can use an index if the OR
conditions are grouped. For example:

dept = 'D101' AND (hire_date > {01/30/89} OR exempt = 1)

In this case, an index on the dept field improves performance.

• If the AND conditions are grouped, an index does not improve performance. For example:

(dept = 'D101' AND hire_date) > {01/30/89}) OR exempt = 1

See also
Indexing multiple fields on page 84

Improving join performance
When joining database tables, index tables can greatly improve performance. Unless the proper indexes are
available, queries that use joins can take a long time.

Assume you have the following Select statement:
SELECT * FROM dept, emp WHERE dept.dept_id = emp.dept_id

In this example, the dept and emp database tables are being joined using the dept_id field. When the driver
executes a query that contains a join, it processes the tables from left to right and uses an index on the second
table’s join field (the dept field of the emp table). To improve join performance, you need an index on the join
field of the second table in the FROM clause.

If the FROM clause includes a third table, the driver also uses an index on the field in the third table that joins
it to any previous table. For example:

SELECT * FROM dept, emp, addr WHERE dept.dept_id = emp.dept AND emp.loc = addr.loc

In this case, you should have an index on the emp.dept field and the addr.loc field.

Progress DataDirect for ODBC Drivers: Reference: Version November 202086

Chapter 9: Using indexes

10
Locking and isolation levels

This chapter discusses locking and isolation levels and how their settings can affect the data you retrieve.

For details, see the following topics:

• Locking

• Isolation levels

• Locking modes and levels

Locking
Locking is a database operation that restricts a user from accessing a table or record. Locking is used in
situations where more than one user might try to use the same table or record at the same time. By locking
the table or record, the system ensures that only one user at a time can affect the data.

Locking is critical in multiuser databases, where different users can try to access or modify the same records
concurrently. Although such concurrent database activity is desirable, it can create problems. Without locking,
for example, if two users try to modify the same record at the same time, they might encounter problems ranging
from retrieving bad data to deleting data that the other user needs. If, however, the first user to access a record
can lock that record to temporarily prevent other users from modifying it, such problems can be avoided. Locking
provides a way to manage concurrent database access while minimizing the various problems it can cause.

87Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Isolation levels
An isolation level represents a particular locking strategy employed in the database system to improve data
consistency. The higher the isolation level, the more complex the locking strategy behind it. The isolation level
provided by the database determines whether a transaction will encounter the following behaviors in data
consistency:

User 1 modifies a row. User 2 reads the same row before User 1 commits.
User 1 performs a rollback. User 2 has read a row that has never really existed
in the database. User 2 may base decisions on false data.

Dirty reads

User 1 reads a row, but does not commit. User 2 modifies or deletes the same
row and then commits. User 1 rereads the row and finds it has changed (or
has been deleted).

Non-repeatable reads

User 1 uses a search condition to read a set of rows, but does not commit.
User 2 inserts one or more rows that satisfy this search condition, then commits.

Phantom reads

User 1 rereads the rows using the search condition and discovers rows that
were not present before.

Isolation levels represent the database system’s ability to prevent these behaviors. The American National
Standards Institute (ANSI) defines four isolation levels:

• Read uncommitted (0)

• Read committed (1)

• Repeatable read (2)

• Serializable (3)

In ascending order (0–3), these isolation levels provide an increasing amount of data consistency to the
transaction. At the lowest level, all three behaviors can occur. At the highest level, none can occur.The success
of each level in preventing these behaviors is due to the locking strategies they use, which are as follows:

Locks are obtained on modifications to the database and held until end of
transaction (EOT). Reading from the database does not involve any locking.

Read uncommitted (0)

Locks are acquired for reading and modifying the database. Locks are released
after reading but locks on modified objects are held until EOT.

Read committed (1)

Locks are obtained for reading and modifying the database. Locks on all
modified objects are held until EOT. Locks obtained for reading data are held

Repeatable read (2)

until EOT. Locks on non-modified access structures (such as indexes and
hashing structures) are released after reading.

All data read or modified is locked until EOT. All access structures that are
modified are locked until EOT. Access structures used by the query are locked
until EOT.

Serializable (3)

The following table shows what data consistency behaviors can occur at each isolation level.

Table 14: Isolation Levels and Data Consistency

Phantom ReadNonrepeatable ReadDirty ReadLevel

YesYesYes0, Read uncommitted

Progress DataDirect for ODBC Drivers: Reference: Version November 202088

Chapter 10: Locking and isolation levels

Phantom ReadNonrepeatable ReadDirty ReadLevel

YesYesNo1, Read committed

YesNoNo2, Repeatable read

NoNoNo3, Serializable

Although higher isolation levels provide better data consistency, this consistency can be costly in terms of the
concurrency provided to individual users. Concurrency is the ability of multiple users to access and modify data
simultaneously. As isolation levels increase, so does the chance that the locking strategy used will create
problems in concurrency.

The higher the isolation level, the more locking involved, and the more time users may spend waiting for data
to be freed by another user. Because of this inverse relationship between isolation levels and concurrency,
you must consider how people use the database before choosing an isolation level.You must weigh the
trade-offs between data consistency and concurrency, and decide which is more important.

Locking modes and levels
Different database systems use various locking modes, but they have two basic modes in common: shared
and exclusive. Shared locks can be held on a single object by multiple users. If one user has a shared lock on
a record, then a second user can also get a shared lock on that same record; however, the second user cannot
get an exclusive lock on that record. Exclusive locks are exclusive to the user that obtains them. If one user
has an exclusive lock on a record, then a second user cannot get either type of lock on the same record.

Performance and concurrency can also be affected by the locking level used in the database system. The
locking level determines the size of an object that is locked in a database. For example, many database systems
let you lock an entire table, as well as individual records. An intermediate level of locking, page-level locking,
is also common. A page contains one or more records and is typically the amount of data read from the disk
in a single disk access.The major disadvantage of page-level locking is that if one user locks a record, a second
user may not be able to lock other records because they are stored on the same page as the locked record.

89Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Locking modes and levels

Progress DataDirect for ODBC Drivers: Reference: Version November 202090

Chapter 10: Locking and isolation levels

11
SSL encryption cipher suites

The following tables list the SSL/TLS encryption cipher suites supported by Progress DataDirect ODBC drivers.
The driver attempts to negotiate either SSL v3 or TLS v1 with the server using OpenSSL cipher suites.

Note: For information about using SSL/TLS data encryption with the drivers, refer to "Using security" in the
user's guide for your driver.

OpenSSL Cipher Suites to SSL v2 Cipher Suites
The following table shows the OpenSSL encryption cipher suites that a driver can use if it can negotiate SSL v2
with the server, with the name of the corresponding SSL v2 encryption cipher suites.

SSL Encryption Cipher SuiteOpenSSL Cipher Suite

SSL_CK_DES_64_CBC_WITH_MD5DES-CBC-MD5

SSL_CK_DES_192_EDE3_CBC_WITH_MD5DES-CBC3-MD5

SSL_CK_RC2_128_CBC_EXPORT40_WITH_MD5EXP-RC2-CBC-MD5

SSL_CK_RC4_128_EXPORT40_WITH_MD5EXP-RC4-MD5

SSL_CK_RC2_128_CBC_WITH_MD5RC2-CBC-MD5

SSL_CK_RC4_128_WITH_MD5
RC4-MD5

91Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Mapping OpenSSL Cipher Suites to SSL v3 Cipher Suites
The following table shows the OpenSSL encryption cipher suites that a driver can use if it can negotiate SSL v3
with the server, with the name of the corresponding SSL v3 encryption cipher suites.

SSL v3 Cipher SuiteOpenSSL Cipher Suite

TLS_RSA_WITH_AES_128_GCM_SHA256AES128-GCM-SHA256

TLS_RSA_WITH_AES_128_CBC_SHA6AES128-SHA

TLS_RSA_WITH_AES_128_CBC_SHA256AES128-SHA256

TLS_RSA_WITH_AES_256_GCM_SHA384AES256-GCM-SHA384

TLS_RSA_WITH_AES_256_CBC_SHA 6AES256-SHA

TLS_RSA_WITH_AES_256_CBC_SHA256AES256-SHA256

SSL_RSA_WITH_3DES_EDE_CBC_SHADES-CBC3-SHA

SSL_RSA_WITH_DES_CBC_SHADES-CBC-SHA

TLS_DHE_DSS_WITH_AES_128_GCM_SHA256DHE-DSS-AES128-GCM-SHA256

TLS_DHE_DSS_WITH_AES_128_CBC_SHA6DHE-DSS-AES128-SHA

TLS_DHE_DSS_WITH_AES_128_CBC_SHA256DHE-DSS-AES128-SHA256

TLS_DHE_DSS_WITH_AES_256_GCM_SHA384DHE-DSS-AES256-GCM-SHA384

TLS_DHE_DSS_WITH_AES_256_CBC_SHA6DHE-DSS-AES256-SHA

TLS_DHE_DSS_WITH_AES_256_CBC_SHA256DHE-DSS-AES256-SHA256

TLS_DHE_DSS_WITH_SEED_CBC_SHA7DHE-DSS-SEED-SHA

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256DHE-RSA-AES128-GCM-SHA256

TLS_DHE_RSA_WITH_AES_128_CBC_SHA6DHE-RSA-AES128-SHA

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256DHE-RSA-AES128-SHA256

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384DHE-RSA-AES256-GCM-SHA384

TLS_DHE_RSA_WITH_AES_256_CBC_SHA6DHE-RSA-AES256-SHA

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256DHE-RSA-AES256-SHA256

TLS_DHE_RSA_WITH_SEED_CBC_SHA7DHE-RSA-SEED-SHA

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHAEDH-DSS-DES-CBC3-SHA

6 AES cipher suites from RFC3268 are used to extend TLS v1.

Progress DataDirect for ODBC Drivers: Reference: Version November 202092

Chapter 11: SSL encryption cipher suites

SSL v3 Cipher SuiteOpenSSL Cipher Suite

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHAEDH-DSS-DES-CBC-SHA

SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHAEDH-RSA-DES-CBC3-SHA

SSL_DHE_RSA_WITH_DES_CBC_SHAEDH-RSA-DES-CBC-SHA

SSL_RSA_EXPORT_WITH_DES40_CBC_SHAEXP-DES-CBC-SHA

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHAEXP-EDH-DSS-DES-CBC-SHA

SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHAEXP-EDH-RSA-DES-CBC-SHA

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5EXP-RC2-CBC-MD5

SSL_RSA_EXPORT_WITH_RC4_40_MD5EXP-RC4-MD5

TLS_PSK_WITH_3DES_EDE_CBC_SHAPSK-3DES-EDE-CBC-SHA

TLS_PSK_WITH_AES_128_CBC_SHAPSK-AES128-CBC-SHA

TLS_PSK_WITH_AES_256_CBC_SHAPSK-AES256-CBC-SHA

TLS_PSK_WITH_RC4_128_SHAPSK-RC4-SHA

SSL_RSA_WITH_RC4_128_MD5RC4-MD5

SSL_RSA_WITH_RC4_128_SHARC4-SHA

TLS_RSA_WITH_SEED_CBC_SHA7SEED-SHA

TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHASRP-3DES-EDE-CBC-SHA

TLS_SRP_SHA_WITH_AES_128_CBC_SHASRP-AES-128-CBC-SHA

TLS_SRP_SHA_WITH_AES_256_CBC_SHASRP-AES-256-CBC-SHA

TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHASRP-DSS-3DES-EDE-CBC-SHA

TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHASRP-DSS-AES-128-CBC-SHA

TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHASRP-DSS-AES-256-CBC-SHA

TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHASRP-RSA-3DES-EDE-CBC-SHA

TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHASRP-RSA-AES-128-CBC-SHA

TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHASRP-RSA-AES-256-CBC-SHA

7 Seed cipher suites from RFC4162 are used to extend TLS v1.

93Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Mapping OpenSSL Encryption Cipher Suites to TLS v1.0,TLS v1.1, and TLS v1.2 Cipher
Suites
The following table shows the OpenSSL Encryption Cipher suites that a driver can use if it can negotiate
TLS v1.0, TLS v1.1, and TLS v1.2 with the server, with the name of the corresponding cipher suites.

Maps to TLS v1 Cipher SuiteOpenSSL Cipher Suite

TLS_RSA_WITH_AES_128_GCM_SHA256AES128-GCM-SHA256

TLS_RSA_WITH_AES_128_CBC_SHA6AES128-SHA

TLS_RSA_WITH_AES_128_CBC_SHA256AES128-SHA256

TLS_RSA_WITH_AES_256_GCM_SHA384AES256-GCM-SHA384

TLS_RSA_WITH_AES_256_CBC_SHA6AES256-SHA

TLS_RSA_WITH_AES_256_CBC_SHA256AES256-SHA256

TLS_RSA_WITH_3DES_EDE_CBC_SHADES-CBC3-SHA

TLS_RSA_WITH_DES_CBC_SHADES-CBC-SHA

DHE-DSS-AES128-GCM-SHA256DHE-DSS-AES128-GCM-SHA256

TLS_DHE_DSS_WITH_AES_128_CBC_SHA6DHE-DSS-AES128-SHA

TLS_DHE_DSS_WITH_AES_128_CBC_SHA256DHE-DSS-AES128-SHA256

TLS_DHE_DSS_WITH_AES_256_GCM_SHA384DHE-DSS-AES256-GCM-SHA384

TLS_DHE_DSS_WITH_AES_256_CBC_SHA6DHE-DSS-AES256-SHA

TLS_DHE_DSS_WITH_AES_256_CBC_SHA256DHE-DSS-AES256-SHA256

TLS_DHE_DSS_WITH_SEED_CBC_SHA7DHE-DSS-SEED-SHA

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256DHE-RSA-AES128-GCM-SHA256

TLS_DHE_RSA_WITH_AES_128_CBC_SHA6DHE-RSA-AES128-SHA

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256DHE-RSA-AES128-SHA

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384DHE-RSA-AES256-GCM-SHA384

TLS_DHE_RSA_WITH_AES_256_CBC_SHA6DHE-RSA-AES256-SHA

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256DHE-RSA-AES256-SHA256

TLS_DHE_RSA_WITH_SEED_CBC_SHA7DHE-RSA-SEED-SHA

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384ECDHE-RSA-AES256-SHA384

Progress DataDirect for ODBC Drivers: Reference: Version November 202094

Chapter 11: SSL encryption cipher suites

Maps to TLS v1 Cipher SuiteOpenSSL Cipher Suite

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHAECDHE-RSA-AES256-SHA

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256ECDHE-RSA-AES128-SHA256

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHAECDHE-RSA-AES128-SHA

TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHAEDH-DSS-DES-CBC3-SHA

TLS_DHE_DSS_WITH_DES_CBC_SHAEDH-DSS-DES-CBC-SHA

TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHAEDH-RSA-DES-CBC3-SHA

TLS_DHE_RSA_WITH_DES_CBC_SHAEDH-RSA-DES-CBC-SHA

TLS_RSA_EXPORT_WITH_DES40_CBC_SHAEXP-DES-CBC-SHA

TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHAEXP-EDH-DSS-DES-CBC-SHA

TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHAEXP-EDH-RSA-DES-CBC-SHA

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5EXP-RC2-CBC-MD5

TLS_RSA_EXPORT_WITH_RC4_40_MD5EXP-RC4-MD5

TLS_PSK_WITH_3DES_EDE_CBC_SHAPSK-3DES-EDE-CBC-SHA

TLS_PSK_WITH_AES_128_CBC_SHAPSK-AES128-CBC-SHA

TLS_PSK_WITH_AES_256_CBC_SHAPSK-AES256-CBC-SHA

TLS_PSK_WITH_RC4_128_SHAPSK-RC4-SHA

TLS_RSA_WITH_RC4_128_MD5RC4-MD5

TLS_RSA_WITH_RC4_128_SHARC4-SHA

TLS_RSA_WITH_SEED_CBC_SHA7SEED-SHA

TLS_SRP_SHA_WITH_3DES_EDE_CBC_SHASRP-3DES-EDE-CBC-SHA

TLS_SRP_SHA_WITH_AES_128_CBC_SHASRP-AES-128-CBC-SHA

TLS_SRP_SHA_WITH_AES_128_CBC_SHASRP-AES-128-CBC-SHA

TLS_SRP_SHA_WITH_AES_256_CBC_SHASRP-AES-256-CBC-SHA

TLS_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHASRP-DSS-3DES-EDE-CBC-SHA

TLS_SRP_SHA_DSS_WITH_AES_128_CBC_SHASRP-DSS-AES-128-CBC-SHA

TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHASRP-DSS-AES-256-CBC-SHA

95Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Maps to TLS v1 Cipher SuiteOpenSSL Cipher Suite

TLS_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHASRP-RSA-3DES-EDE-CBC-SHA

TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHASRP-RSA-AES-128-CBC-SHA

TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHASRP-RSA-AES-256-CBC-SHA

Reference
OpenSSL Cryptography and SSL/TLS Toolkit

Progress DataDirect for ODBC Drivers: Reference: Version November 202096

Chapter 11: SSL encryption cipher suites

http://www.openssl.org/docs/apps/ciphers.html

12
DataDirect Bulk Load

This chapter contains detailed information about the functions and statement attributes associated with DataDirect
Bulk Load.

For a discussion of the operation of DataDirect Bulk Load for a specific driver, refer to "Using DataDirect Bulk
Load" in the user's guide for the driver.

For details, see the following topics:

• DataDirect Bulk Load functions

• Utility functions

• Export, validate, and load functions

• DataDirect Bulk Load statement attributes

DataDirect Bulk Load functions
The following DataDirect functions and parameters are not part of the standard ODBC API. They include
functions for returning errors and warnings on bulk operations as well as functions for bulk export, loading, and
verification:

• GetBulkDiagRec and GetBulkDiagRecW on page 98

• ExportTableToFile and ExportTableToFileW on page 100

• ValidateTableFromFile and ValidateTableFromFileW on page 103

• LoadTableFromFile and LoadTableFromFileW on page 105

97Progress DataDirect for ODBC Drivers: Reference: Version November 2020

• SetBulkOperation (Salesforce driver only) on page 110

• GetBulkOperation (Salesforce driver only) on page 111

Note: For your application to use DataDirect Bulk Load functionality, it must obtain driver connection handles
and function pointers, as follows:

1. Use SQLGetInfo with the parameter SQL_DRIVER_HDBC to obtain the driver’s connection handle from
the Driver Manager.

2. Use SQLGetInfo with the parameter SQL_DRIVER_HLIB to obtain the driver’s shared library or DLL handle
from the Driver Manager.

3. Obtain function pointers to the bulk load functions using the function name resolution method specific to
your operating system. The bulk.c source file shipped with the drivers contains the function resolveName
that illustrates how to obtain function pointers to the bulk load functions.

All of this is detailed in the code examples shown in the following sections. All of these functions can be found
in the commented bulk.c source file that ships with the drivers. This file is located in the \samples\bulk
subdirectory of the product installation directory along with a text file named bulk.txt. Please consult bulk.txt
for instructions about the bulk.c file.

Utility functions
The example code in this section shows utility functions to which the DataDirect functions for bulk exporting,
verification, and bulk loading refer, as well as the DataDirect functions GetBulkDiagRec and GetBulkDiagRecW.

GetBulkDiagRec and GetBulkDiagRecW

Syntax

SQLReturn
GetBulkDiagRec (SQLSMALLINT HandleType,
 SQLHANDLE Handle,
 SQLSMALLINT RecNumber,
 SQLCHAR* Sqlstate,
 SQLINTEGER* NativeError,
 SQLCHAR* MessageText,
 SQLSMALLINT BufferLength,
 SQLSMALLINT* TextLength);
GetBulkDiagRecW (SQLSMALLINT HandleType,
 SQLHANDLE Handle,
 SQLSMALLINT RecNumber,
 SQLWCHAR* Sqlstate,
 SQLINTEGER* NativeError,
 SQLWCHAR* MessageText,
 SQLSMALLINT BufferLength,
 SQLSMALLINT* TextLength);

The standard ODBC return codes are returned: SQL_SUCCESS, SQL_SUCCESS_WITH_INFO,
SQL_INVALID_HANDLE, SQL_NO_DATA, and SQL_ERROR.

Progress DataDirect for ODBC Drivers: Reference: Version November 202098

Chapter 12: DataDirect Bulk Load

Description
GetBulkDiagRec (ANSI application) and GetBulkDiagRecW (Unicode application) return errors and warnings
generated by bulk operations. The argument definition, return values, and function behavior is the same as for
the standard ODBC SQLGetDiagRec and SQLGetDiagRecW functions with the following exceptions:

• The GetBulkDiagRec and GetBulkDiagRecW functions can be called after a bulk load, export or validate
function is invoked to retrieve any error messages generated by the bulk operation. Calling these functions
after any function except a bulk function is not recommended.

• The values returned in the Sqlstate and MessageText buffers by the GetBulkDiagRecW function are encoded
as UTF-16 on Windows platforms. On UNIX and Linux platforms, the values returned for Sqlstate and
MessageText are UTF-16 if the value of the SQL_ATTR_APP_UNICODE_TYPE is SQL_DD_CP_UTF16
and UTF-8 if the value of SQL_ATTR_APP_UNICODE_TYPE is SQL_DD_CP_UTF8.

• The handle passed as the Handle argument must be a driver connection handle obtained by calling
SQLGetInfo (<ODBC Conn Handle>, SQL_DRIVER_HDBC).

• SQL_HANDLE_DBC is the only value accepted for HandleType. Any other value causes an error to be
returned.

Example

#include "qesqlext.h"

#ifndef NULL
#define NULL 0
#endif

#if (! defined (_WIN32)) && (! defined (_WIN64))
typedef void * HMODULE;
#endif

/* Get the address of a routine in a shared library or DLL. */
void * resolveName (
 HMODULE hmod,
 const char *name)
{
#if defined (_WIN32) || defined (_WIN64)

 return GetProcAddress (hmod, name);
#elif defined (hpux)
 void *routine = shl_findsym (hmod, name);

 shl_findsym (hmod, name, TYPE_PROCEDURE, &routine);

 return routine;
#else
 return dlsym (hmod, name);
#endif
}
/* Get errors directly from the driver's connection handle. */
void driverError (void *driverHandle, HMODULE hmod)
{
 UCHAR sqlstate[16];
 UCHAR errmsg[SQL_MAX_MESSAGE_LENGTH * 2];
 SDWORD nativeerr;
 SWORD actualmsglen;
 RETCODE rc;
 SQLSMALLINT i;
 PGetBulkDiagRec getBulkDiagRec;

 getBulkDiagRec = (PGetBulkDiagRec)
 resolveName (hmod, "GetBulkDiagRec");

 if (! getBulkDiagRec) {
 printf ("Cannot find GetBulkDiagRec!\n");

99Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Utility functions

 return;
 }

 i = 1;
loop: rc = (*getBulkDiagRec) (SQL_HANDLE_DBC,
 driverHandle, i++,
 sqlstate, &nativeerr, errmsg,
 SQL_MAX_MESSAGE_LENGTH - 1, &actualmsglen);

 if (rc == SQL_ERROR) {
 printf ("GetBulkDiagRec failed!\n");
 return;
 }

 if (rc == SQL_NO_DATA_FOUND) return;

 printf ("SQLSTATE = %s\n", sqlstate);
 printf ("NATIVE ERROR = %d\n", nativeerr);
 errmsg[actualmsglen] = '\0';
 printf ("MSG = %s\n\n", errmsg);
 goto loop;
}

Export, validate, and load functions
The example code in this section shows the DataDirect functions for bulk exporting, verification, and bulk
loading.

ExportTableToFile and ExportTableToFileW

Syntax

SQLReturn
ExportTableToFile (HDBC hdbc,
 SQLCHAR* TableName,
 SQLCHAR* FileName,
 SQLLEN IANAAppCodePage,
 SQLLEN ErrorTolerance,
 SQLLEN WarningTolerance,
 SQLCHAR* LogFile)
ExportTableToFileW (HDBC hdbc,
 SQLWCHAR* TableName,
 SQLWCHAR* FileName,
 SQLLEN IANAAppCodePage,
 SQLLEN ErrorTolerance,
 SQLLEN WarningTolerance,
 SQLWCHAR* LogFile)

The standard ODBC return codes are returned: SQL_SUCCESS, SQL_SUCCESS_WITH_INFO,
SQL_INVALID_HANDLE, and SQL_ERROR.

Progress DataDirect for ODBC Drivers: Reference: Version November 2020100

Chapter 12: DataDirect Bulk Load

Purpose
ExportTableToFile (ANSI application) and ExportTableToFileW (Unicode application) bulk export a table to a
physical file. Both a bulk data file and a bulk configuration file are produced by this operation.The configuration
file has the same name as the data file, but with an XML extension. The bulk export operation can create a log
file and can also export to external files. Refer to "External overflow files" in the user's guide for your driver for
more information. The export operation can be configured such that if any errors or warnings occur:

• The operation always completes

• The operation always terminates

• The operation terminates after a certain threshold of warnings or errors is exceeded.

Parameters

hdbc

is the driver’s connection handle, which is not the handle returned by SQLAllocHandle or
SQLAllocConnect. To obtain the driver's connection handle, the application must then use the
standard ODBC function SQLGetInfo (ODBC Conn Handle, SQL_DRIVER_HDBC).

TableName

is a null-terminated string that specifies the name of the source database table that contains the data
to be exported.

FileName

is a null-terminated string that specifies the path (relative or absolute) and file name of the bulk load
data file to which the data is to be exported. It also specifies the file name of the bulk configuration
file.The file name must be the fully qualified path to the bulk data file.This file must not already exist.
If the file already exists, an error is returned.

IANAAppCodePage

specifies the code page value to which the driver must convert all data for storage in the bulk data
file. See "Code page values" for details about IANAAppCodePage. Refer to "Character Set
Conversions" in the user's guide for your driver for more information.

The default value on Windows is the current code page of the machine. On UNIX, Linux, and macOS
the default value is 4.

ErrorTolerance

specifies the number of errors to tolerate before an operation terminates. A value of 0 indicates that
no errors are tolerated; the operation fails when the first error is encountered.The default of -1 means
that an infinite number of errors is tolerated. WarningTolerance specifies the number of warnings to
tolerate before an operation terminates. A value of 0 indicates that no warnings are tolerated; the
operation fails when the first warning is encountered.

The default of -1 means that an infinite number of warnings is tolerated.

LogFile

is a null-terminated character string that specifies the path (relative or absolute) and file name of the
bulk log file. Events logged to this file are:

• Total number of rows fetched

101Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Export, validate, and load functions

• A message for each row that failed to export

• Total number of rows that failed to export

• Total number of rows successfully exported

Information about the load is written to this file, preceded by a header. Information about the next
load is appended to the end of the file.

If LogFile is NULL, no log file is created.

Example

HDBC hdbc;
HENV henv;
void *driverHandle;
HMODULE hmod;
PExportTableToFile exportTableToFile;

char tableName[128];
char fileName[512];
char logFile[512];
int errorTolerance;
int warningTolerance;
int codePage;

/* Get the driver's connection handle from the DM. This handle must be used when calling
 directly into the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HDBC, &driverHandle, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}

/* Get the DM's shared library or DLL handle to the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HLIB, &hmod, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}

exportTableToFile = (PExportTableToFile)
 resolveName (hmod, "ExportTableToFile");
if (! exportTableToFile) {
 printf ("Cannot find ExportTableToFile!\n");
 exit (255);
}

rc = (*exportTableToFile) (
 driverHandle,
 (const SQLCHAR *) tableName,
 (const SQLCHAR *) fileName,
 codePage,
 errorTolerance, warningTolerance,
 (const SQLCHAR *) logFile);
if (rc == SQL_SUCCESS) {
 printf ("Export succeeded.\n");
}else {
 driverError (driverHandle, hmod);
}

See also
Code page values on page 43

Progress DataDirect for ODBC Drivers: Reference: Version November 2020102

Chapter 12: DataDirect Bulk Load

ValidateTableFromFile and ValidateTableFromFileW

Syntax

SQLReturn
ValidateTableFromFile (HDBC hdbc,
 SQLCHAR* TableName,
 SQLCHAR* ConfigFile,
 SQLCHAR* MessageList,
 SQLULEN MessageListSize,
 SQLULEN* NumMessages)
ValidateTableFromFileW (HDBC hdbc,
 SQLCHAR* TableName,
 SQLCHAR* ConfigFile,
 SQLCHAR* MessageList,
 SQLULEN MessageListSize,
 SQLULEN* NumMessages)

The standard ODBC return codes are returned: SQL_SUCCESS, SQL_SUCCESS_WITH_INFO,
SQL_INVALID_HANDLE, and SQL_ERROR.

Purpose
ValidateTableFromFile (ANSI application) and ValidateTablefromFileW (Unicode application) verify the metadata
in the configuration file against the data structure of the target database table. Refer to "Verification of the bulk
load configuration file" in the user's guide for your driver for more detailed information.

Note: The Salesforce driver does not support ValidateTableFromFile and ValidateTableFromFileW.

Parameters

hdbc

is the driver’s connection handle, which is not the handle returned by SQLAllocHandle or
SQLAllocConnect. To obtain the driver's connection handle, the application must then use the
standard ODBC function SQLGetInfo (ODBC Conn Handle, SQL_DRIVER_HDBC).

TableName

is a null-terminated character string that specifies the name of the target database table into which
the data is to be loaded.

ConfigFile

is a null-terminated character string that specifies the path (relative or absolute) and file name of the
bulk configuration file.

MessageList

specifies a pointer to a buffer used to record any of the errors and warnings. MessageList must not
be null.

MessageListSize

specifies the maximum number of characters that can be written to the buffer to which MessageList
points. If the buffer to which MessageList points is not big enough to hold all of the messages
generated by the validation process, the validation is aborted and SQL_ERROR is returned.

103Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Export, validate, and load functions

NumMessages

contains the number of messages that were added to the buffer. This method reports the following
criteria:

• Check data types - Each column data type is checked to ensure no loss of data occurs. If a data
type mismatch is detected, the driver adds an entry to the MessageList in the following format:
Risk of data conversion loss: Destination column_number is of type x,
and source column_number is of type y.

• Check column sizes - Each column is checked for appropriate size. If column sizes are too small
in destination tables, the driver adds an entry to the MessageList in the following format:Possible
Data Truncation: Destination column_number is of size x while source
column_number is of size y.

• Check codepages - Each column is checked for appropriate code page alignment between the
source and destination. If a mismatch occurs, the driver adds an entry to the MessageList in the
following format: Destination column code page for column_number risks data
corruption if transposed without correct character conversion from source
column_number.

• Check Config Col Info - The destination metadata and the column metadata in the configuration
file are checked for consistency of items such as length for character and binary data types, the
character encoding code page for character types, precision and scale for numeric types, and
nullablity for all types. If any inconsistency is found, the driver adds an entry to the MessageList
in the following format:Destination column metadata for column_number has column
info mismatches from source column_number.

• Check Column Names and Mapping - The columns defined in the configuration file are compared
to the destination table columns based on the order of the columns. If the number of columns in
the configuration file and/or import file does not match the number of columns in the table, the
driver adds an entry to the MessageList in the following format:The number of destination
columns number does not match the number of source columns number.

The function returns an array of null-terminated strings in the buffer to which MessageList points
with an entry for each of these checks. If the driver determines that the information in the bulk load
configuration file matches the metadata of the destination table, a return code of SQL_SUCCESS
is returned and the MessageList remains empty.

If the driver determines that there are minor differences in the information in the bulk load configuration
file and the destination table, then SQL_SUCCESS_WITH_INFO is returned and the MessageList
is populated with information on the cause of the potential problems.

If the driver determines that the information in the bulk load information file cannot successfully be
loaded into the destination table, then a return code of SQL_ERROR is returned and the MessageList
is populated with information on the problems and mismatches between the source and destination.

Example

HDBC hdbc;
HENV henv;
void *driverHandle;
HMODULE hmod;
PValidateTableFromFile validateTableFromFile;

char tableName[128];
char configFile[512];
char messageList[10240];
SQLLEN numMessages;

/* Get the driver's connection handle from the DM. This handle must be used when calling
 directly into the driver. */

Progress DataDirect for ODBC Drivers: Reference: Version November 2020104

Chapter 12: DataDirect Bulk Load

rc = SQLGetInfo (hdbc, SQL_DRIVER_HDBC, &driverHandle, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}

/* Get the DM's shared library or DLL handle to the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HLIB, &hmod, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}

validateTableFromFile = (PValidateTableFromFile)
 resolveName (hmod, "ValidateTableFromFile");
if (!validateTableFromFile) {
 printf ("Cannot find ValidateTableFromFile!\n");
 exit (255);
}

messageList[0] = 0;
numMessages = 0;

rc = (*validateTableFromFile) (
 driverHandle,
 (const SQLCHAR *) tableName,
 (const SQLCHAR *) configFile,
 (SQLCHAR *) messageList,
 sizeof (messageList),
 &numMessages);
printf ("%d message%s%s\n", numMessages,
 (numMessages == 0) ? "s" :
 ((numMessages == 1) ? " : " : "s : "),
 (numMessages > 0) ? messageList : "");
if (rc == SQL_SUCCESS) {
 printf ("Validate succeeded.\n");
}
else {
 driverError (driverHandle, hmod);
}

LoadTableFromFile and LoadTableFromFileW

Syntax

SQLReturn
LoadTableFromFile (HDBC hdbc,
 SQLCHAR* TableName,
 SQLCHAR* FileName,
 SQLLEN ErrorTolerance,
 SQLLEN WarningTolerance,
 SQLCHAR* ConfigFile,
 SQLCHAR* LogFile,
 SQLCHAR* DiscardFile,
 SQLULEN LoadStart,
 SQLULEN LoadCount,
 SQLULEN ReadBufferSize)
LoadTableFromFileW (HDBC hdbc,
 SQLWCHAR* TableName,
 SQLWCHAR* FileName,
 SQLLEN ErrorTolerance,

105Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Export, validate, and load functions

 SQLLEN WarningTolerance,
 SQLWCHAR* ConfigFile,
 SQLWCHAR* LogFile,
 SQLWCHAR* DiscardFile,
 SQLULEN LoadStart,
 SQLULEN LoadCount,
 SQLULEN ReadBufferSize)

The standard ODBC return codes are returned: SQL_SUCCESS, SQL_SUCCESS_WITH_INFO,
SQL_INVALID_HANDLE, and SQL_ERROR.

Purpose
LoadTableFromFile (ANSI application) and LoadTablefromFileW (Unicode application) bulk load data from a
file to a table. The load operation can create a log file and can also create a discard file that contains rows
rejected during the load. The discard file is in the same format as the bulk load data file. After fixing reported
issues in the discard file, the bulk load can be reissued using the discard file as the bulk load data file.

The load operation can be configured such that if any errors or warnings occur:

• The operation always completes

• The operation always terminates

• The operation terminates after a certain threshold of warnings or errors is exceeded.

If a load fails, the LoadStart and LoadCount parameters can be used to control which rows are loaded when
a load is restarted after a failure.

Parameters
hdbc

is the driver’s connection handle, which is not the handle returned by SQLAllocHandle or SQLAllocConnect.
To obtain the driver's connection handle, the application must then use the standard ODBC function SQLGetInfo
(ODBC Conn Handle, SQL_DRIVER_HDBC).

TableName

is a null-terminated character string that specifies the name of the target database table into which the data is
to be loaded. For the Salesforce driver, the value of this parameter can vary. See "Using the TableName
parameter with the Salesforce driver" for more information.

FileName

is a null-terminated string that specifies the path (relative or absolute) and file name of the bulk data file from
which the data is to be loaded. The file name must be the fully qualified path to the bulk data file.

ErrorTolerance

specifies the number of errors to tolerate before an operation terminates. A value of 0 indicates that no errors
are tolerated; the operation fails when the first error is encountered. The default of -1 means that an infinite
number of errors is tolerated.

WarningTolerance

specifies the number of warnings to tolerate before an operation terminates. A value of 0 indicates that no
warnings are tolerated; the operation fails when the first warning is encountered.The default of -1 means that
an infinite number of warnings is tolerated.

ConfigFile

is a null-terminated character string that specifies the path (relative or absolute) and file name of the bulk
configuration file.

LogFile

Progress DataDirect for ODBC Drivers: Reference: Version November 2020106

Chapter 12: DataDirect Bulk Load

is a null-terminated character string that specifies the path (relative or absolute) and file name of the bulk log
file. The file name must be the fully qualified path to the log file. Events logged to this file are:

• Total number of rows read

• Message for each row that failed to load.

• Total number of rows that failed to load

• Total number of rows successfully loaded

Information about the load is written to this file, preceded by a header. Information about the next load is
appended to the end of the file.

If LogFile is NULL, no log file is created.

DiscardFile is a null-terminated character string that specifies the path (relative or absolute) and file name
of the bulk discard file. The file name must be the fully qualified path to the discard file. Any row that cannot
be inserted into database as result of bulk load is added to this file, with the last row to be rejected added to
the end of the file.

Information about the load is written to this file, preceded by a header. Information about the next load is
appended to the end of the file.

If DiscardFile is NULL, no discard file is created.

LoadStart specifies the first row to be loaded from the data file. Rows are numbered starting with 1. For
example, when LoadStart=10, the first 9 rows of the file are skipped and the first row loaded is row 10. This
parameter can be used to restart a load after a failure.

LoadCount specifies the number of rows to be loaded from the data file. The bulk load operation loads rows
up to the value of LoadCount from the file to the database. It is valid for LoadCount to specify more rows than
exist in the data file. The bulk load operation completes successfully when either the LoadCount value has
been loaded or the end of the data file is reached.This parameter can be used in conjunction with LoadStart
to restart a load after a failure.

ReadBufferSize specifies the size, in KB, of the buffer that is used to read the bulk data file for a bulk load
operation. The default is 2048.

Example

HDBC hdbc;
HENV henv;
void *driverHandle;
HMODULE hmod;
PLoadTableFromFile loadTableFromFile;
char tableName[128];
char fileName[512];
char configFile[512];
char logFile[512];
char discardFile[512];
int errorTolerance;
int warningTolerance;
int loadStart;
int loadCount;
int readBufferSize;

/* Get the driver's connection handle from the DM. This handle must be used when calling
 directly into the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HDBC, &driverHandle, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}

107Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Export, validate, and load functions

/* Get the DM's shared library or DLL handle to the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HLIB, &hmod, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}

loadTableFromFile = (PLoadTableFromFile)
 resolveName (hmod, "LoadTableFromFile");
if (! loadTableFromFile) {
 printf ("Cannot find LoadTableFromFile!\n");
 exit (255);
}
rc = (*loadTableFromFile) (
 driverHandle,
 (const SQLCHAR *) tableName,
 (const SQLCHAR *) fileName,
 errorTolerance, warningTolerance,
 (const SQLCHAR *) configFile,
 (const SQLCHAR *) logFile,
 (const SQLCHAR *) discardFile,
 loadStart, loadCount,
 readBufferSize);
if (rc == SQL_SUCCESS) {
 printf ("Load succeeded.\n");
}
else {
 driverError (driverHandle, hmod);
}

See also
Using the TableName parameter with the Salesforce driver on page 108

Using the TableName parameter with the Salesforce driver

The value required in the TableName parameter varies, depending on the bulk operation specified in the
SetBulkOperation function. The following paragraphs describe the TableName value based on whether the
Bulk Operation type is set to INSERT, DELETE, or UPSERT.

BULK_OPERATION_INSERT
table_name [(column_list)]

where:

column_list

is (columnSpec[, columnSpec]…)

columnSpec

can be columnName or foreignKeyColumnName EXT_ID externalIdColumnName

The column names define the mapping between columns in the table and columns in the bulk data
file. The column names can also indicate which columns are External ID columns.

The SQL equivalent of this function is:

INSERT INTO table_name [(column_list)] VALUES (? … ?)

Progress DataDirect for ODBC Drivers: Reference: Version November 2020108

Chapter 12: DataDirect Bulk Load

BULK_OPERATION_DELETE
table_name (column_list)

where:

column_list

is the ID column, which identifies the row to delete.

For DELETE, the ID column is the only valid column in the column list.

The SQL equivalent of this function is:

DELETE FROM table_name WHERE <column> = ? AND <column> = ? …

BULK_OPERATION_UPDATE
table_name (column_list)

where:

column_list

is ID_column, <update column>[,<update column>]…

ID_column

must be one of the columns in the column list. The ID column identifies which row to update; the
other columns are the list of columns to be updated.

The SQL equivalent of this function is:

UPDATE table_name SET <update column> = ? … WHERE <ID column> = ? …

BULK_OPERATION_UPSERT
table_name (column_list)

where:

column_list

is the same as for INSERT except that at least one of the columns must be identified as an external
ID.

For UPSERT, column_list can be (columnSpec[, columnSpec]…)

columnSpec

can be one of the following:

• columnName

• foreignKeyColumnName EXT_ID externalIdColumnName

• extIdColumn EXT_ID

where extIdColumn is the column that is checked to determine whether the row already exists
in the database.

The SQL equivalent of this function is one of the following:

109Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Export, validate, and load functions

• If no row matching the table’s key columns is found:

INSERT INTO table_name [(column_list)] VALUES (? … ?)

• If a row matching the table’s key columns is found:

UPDATE table_name SET <table column> = ? … WHERE <key column> = ? …

SetBulkOperation (Salesforce driver only)

Syntax

SQLReturn
SetBulkOperation (HDBC hdbc,
 SQLULEN Operation)

The standard ODBC return codes are returned: SQL_SUCCESS, SQL_SUCCESS_WITH_INFO,
SQL_INVALID_HANDLE, SQL_NO_DATA, and SQL_ERROR.

Purpose
Specifies the bulk operation to be performed when either the LoadTableFromFile and LoadTableFromFileW
method is called. The bulk operation remains set until SetBulkOperation is called again. When a connection
is established, the initial bulk operation is BULK_OPERATION_INSERT.

Parameters

hdbc

is the driver’s connection handle, which is not the handle returned by SQLAllocHandle or
SQLAllocConnect. To obtain the driver's connection handle, the application must use SQLGetInfo
(ODBC Conn Handle,SQL_DRIVER_HDBC).

Operation

is an integer value that specifies the bulk operation to set on the connection. It can have one of the
following values:

• 1 - BULK_OPERATION_INSERT

• 2 - BULK_OPERATION_UPDATE

• 3- BULK_OPERATION_DELETE

• 4 - BULK_OPERATION_UPSERT

Example

HDBC hdbc;
HENV henv;
void *driverHandle;
HMODULE hmod;
PSetBulkOperation setBulkOperation;
/* Get the driver's connection handle from the DM. This handle must be used when calling
 directly into the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HDBC, &driverHandle, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);

Progress DataDirect for ODBC Drivers: Reference: Version November 2020110

Chapter 12: DataDirect Bulk Load

 EnvClose (henv, hdbc);
 exit (255);
}
/* Get the DM's shared library or DLL handle to the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HLIB, &hmod, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}
/* Set the Bulk Operation type to DELETE. Any subsequent call to LoadTableFromFile(W)
will result in a bulk delete of the rows specified. */

setBulkOperation = (PSetBulkOperation)
 resolveName (hmod, "SetBulkOperation");
if (! setBulkOperation) {
 printf ("Cannot find SetBulkOperation!\n");
 exit (255);
}

rc = (*setBulkOperation) (
 driverHandle,
 BULK_OPERATION_DELETE);
if (rc == SQL_SUCCESS) {
 printf ("Set Bulk operation(DELETE) succeeded.\n");
}else {
 driverError (driverHandle, hmod);
}
/* */

See also
LoadTableFromFile and LoadTableFromFileW on page 105

GetBulkOperation (Salesforce driver only)

Syntax

SQLReturn
GetBulkOperation (HDBC hdbc,
 SQLULEN Operation)

The standard ODBC return codes are returned: SQL_SUCCESS, SQL_SUCCESS_WITH_INFO,
SQL_INVALID_HANDLE, and SQL_ERROR.

Purpose
Returns the bulk operation currently set on the connection. The bulk operation specifies the operation to be
performed when either the LoadTableFromFile or LoadTableFromFileW method is called.

Parameters

hdbc

is the driver’s connection handle, which is not the handle returned by SQLAllocHandle or
SQLAllocConnect. To obtain the driver's connection handle, the application must then use the
standard ODBC function SQLGetInfo (ODBC Conn Handle, SQL_DRIVER_HDBC).

111Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Export, validate, and load functions

Operation

is a pointer to the location where current bulk operation specified for the connection is returned. The
returned value is one of the operation values defined by SetBulkOperation.

Example

HDBC hdbc;
HENV henv;
void *driverHandle;
HMODULE hmod;
PGetBulkOperation getBulkOperation;
SQLULEN bulkOperationType;

/* Get the driver's connection handle from the DM. This handle must be used when calling
 directly into the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HDBC, &driverHandle, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}

/* Get the DM's shared library or DLL handle to the driver. */

rc = SQLGetInfo (hdbc, SQL_DRIVER_HLIB, &hmod, 0, NULL);
if (rc != SQL_SUCCESS) {
 ODBC_error (henv, hdbc, SQL_NULL_HSTMT);
 EnvClose (henv, hdbc);
 exit (255);
}

/* Get the current value for bulk operation. */

getBulkOperation = (PGetBulkOperation)
resolveName (hmod, "GetBulkOperation");
if (! getBulkOperation) {
 printf ("Cannot find GetBulkOperation!\n");
 exit (255);
}

rc = (*getBulkOperation) (
driverHandle,
&bulkOperationType);
if (rc == SQL_SUCCESS) {
 printf ("Current bulk operation is: %u.\n", bulkOperationType);
}
else {
 driverError (driverHandle, hmod);
}

/* */

See also
LoadTableFromFile and LoadTableFromFileW on page 105
SetBulkOperation (Salesforce driver only) on page 110

Progress DataDirect for ODBC Drivers: Reference: Version November 2020112

Chapter 12: DataDirect Bulk Load

DataDirect Bulk Load statement attributes
In addition to exporting tables with the ExportTableToFile methods, result sets can be exported to a bulk load
data file through the use of two DataDirect statement attributes, SQL_BULK_EXPORT_PARAMS and
SQL_BULK_EXPORT. SQL_BULK_EXPORT_PARAMS is used to configure information about where and
how the data is to be exported. SQL_BULK_EXPORT begins the bulk export operation.

SQL_BULK_EXPORT_PARAMS

The ValuePtr argument to SQLSetStmtAttr or SQLSetStmtAttrW when the attribute argument is
SQL_BULK_EXPORT_PARAMS is a pointer to a BulkExportParams structure. The definitions of the fields in
the BulkExportParams structure are the same as the corresponding arguments in the ExportTableToFile and
ExportTableToFileW methods except that the generation of the log file is controlled by the EnableLogging field.
When EnableLogging is set to 1, the driver writes events that occur during the export to a log file. Events logged
to this file are:

• A message for each row that failed to export.

• Total number of rows fetched

• Total number of rows successfully exported

• Total number of rows that failed to export

The log file is located in the same directory as the bulk load data file and has the same base name as the bulk
load data file with a .log extension. When EnableLogging is set to 0, no logging takes place

If the bulk export parameters are not set prior to setting the SQL_BULK_EXPORT attribute, the driver uses
the current driver code page value, defaults EnableLogging to 1 (enabled), and defaults ErrorTolerance and
WarningTolerance to -1 (infinite).

The SQL_BULK_EXPORT_PARAMS structure is as follows:

struct BulkExportParams {
 SQLLEN Version; /* Must be the value 1 */
 SQLLEN IANAAppCodePage;
 SQLLEN EnableLogging;
 SQLLEN ErrorTolerance;
 SQLLEN WarningTolerance;
};

SQL_BULK_EXPORT

The ValuePtr argument to SQLSetStmtAttr or SQLSetStmtAttrW when the attribute argument is
SQL_BULK_EXPORT is a pointer to a string that specifies the file name of the bulk load data file to which the
data in the result set will be exported.

Result set export occurs when the SQL_BULK_EXPORT statement attribute is set. If using the
SQL_BULK_EXPORT_PARAMS attribute to set values for the bulk export parameters, the
SQL_BULK_EXPORT_PARAMS attribute must be set prior to setting the SQL_BULK_EXPORT attribute. Once
set, the bulk export parameters remain set for the life of the statement. If the bulk export parameters are not
set prior to setting the SQL_BULK_EXPORT attribute, the driver uses the current driver code page value,
defaults EnableLogging to 1 (enabled), and defaults ErrorTolerance and WarningTolerance to -1 (infinite).

113Progress DataDirect for ODBC Drivers: Reference: Version November 2020

DataDirect Bulk Load statement attributes

Both a bulk load data file and a bulk load configuration file are produced by this operation. The configuration
file has the same base name as the bulk load data file, but with an XML extension. The configuration file is
created in the same directory as the bulk load data file.

Progress DataDirect for ODBC Drivers: Reference: Version November 2020114

Chapter 12: DataDirect Bulk Load

13
DataDirect connection pooling

Connection pooling allows you to reuse connections rather than creating a new one every time the driver needs
to establish a connection to the underlying database.Your Progress DataDirect driver enables connection
pooling without requiring changes to your client application.

Note: Connection pooling works only with connections that are established using SQLConnect or
SQLDriverConnect with the SQL_DRIVER_NO_PROMPT argument and only with applications that are
thread-enabled.

DataDirect connection pooling that is implemented by the DataDirect driver is different than connection pooling
implemented by the Windows Driver Manager. The Windows Driver Manager opens connections dynamically,
up to the limits of memory and server resources. DataDirect connection pooling, however, allows you to control
the number of connections in a pool through the Min Pool Size (minimum number of connections in a pool)
and Max Pool Size (maximum number of connections in a pool) connection options. In addition, DataDirect
connection pooling is cross-platform, allowing it to operate on UNIX and Linux.

Important: On a Windows system, do not use both Windows Driver Manager connection pooling and DataDirect
connection pooling at the same time.

The following topics provide general information on how DataDirect connection pooling works. For detailed
information on connection pooling options, refer to "Connection option descriptions" in the user's guide for your
driver.

For details, see the following topics:

• Creating a connection pool

• Adding connections to a pool

115Progress DataDirect for ODBC Drivers: Reference: Version November 2020

• Removing connections from a pool

• Handling dead connections in a pool

• Connection pool statistics

• Summary of pooling-related options

Creating a connection pool
Each connection pool is associated with a specific connection string. By default, the connection pool is created
when the first connection with a unique connection string connects to the data source. The pool is populated
with connections up to the minimum pool size before the first connection is returned. Additional connections
can be added until the pool reaches the maximum pool size. If the Max Pool Size option is set to 10 and all
connections are active, a request for an eleventh connection has to wait in queue for one of the 10 pool
connections to become idle. The pool remains active until the process ends or the driver is unloaded.

If a new connection is opened and the connection string does not exactly match an existing pool, a new pool
must be created. By using the same connection string, you can enhance the performance and scalability of
your application.

Adding connections to a pool
A connection pool is created in the process of creating each unique connection string that an application uses.
When a pool is created, it is populated with enough connections to satisfy the minimum pool size requirement,
set by the Min Pool Size connection option. The maximum pool size is set by the Max Pool Size connection
option. If an application needs more connections than the number set by Min Pool Size, the driver allocates
additional connections to the pool until the number of connections reaches the value set by Max Pool Size.

Once the maximum pool size has been reached and no usable connection is available to satisfy a connection
request, the request is queued in the driver.The driver waits for the length of time specified in the Login Timeout
connection option for a usable connection to return to the application. If this time period expires and a connection
has not become available, the driver returns an error to the application.

A connection is returned to the pool when the application calls SQLDisconnect.Your application is still
responsible for freeing the handle, but this does not result in the database session ending.

Removing connections from a pool
A connection is removed from a connection pool when it exceeds its lifetime as determined by the Load Balance
Timeout connection option. In addition, DataDirect has created connection attributes described in the following
table to give your application the ability to reset connection pools. If connections are in use at the time of these
calls, they are marked appropriately. When SQLDisconnect is called, the connections are discarded instead
of being returned to the pool.

Progress DataDirect for ODBC Drivers: Reference: Version November 2020116

Chapter 13: DataDirect connection pooling

Table 15: Pool Reset Connection Attributes

DescriptionConnection Attribute

Calling SQLSetConnectAttr (SQL_ATTR_CLEAR_POOLS,
SQL_CLEAR_ALL_CONN_POOL) clears all the connection
pools associated with the driver that created the
connection.This is a write-only connection attribute.The driver
returns an error if SQLGetConnectAttr
(SQL_ATTR_CLEAR_POOLS) is called.

SQL_ATTR_CLEAR_POOLS Value:
SQL_CLEAR_ALL_CONN_POOL

Calling SQLSetConnectAttr (SQL_ATTR_CLEAR_POOLS,
SQL_CLEAR_CURRENT_CONN_POOL) clears the
connection pool that is associated with the current
connection.This is a write-only connection attribute.The driver
returns an error if SQLGetConnectAttr
(SQL_ATTR_CLEAR_POOLS) is called.

SQL_ATTR_CLEAR_POOLS Value:
SQL_CLEAR_CURRENT_CONN_POOL

Note: By default, if removing a connection causes the number of connections to drop below the number
specified in the Min Pool Size option, a new connection is not created until an application needs one.

Handling dead connections in a pool
What happens when an idle connection loses its physical connection to the database? For example, suppose
the database server is rebooted or the network experiences a temporary interruption. An application that
attempts to connect could receive errors because the physical connection to the database has been lost.

Your Progress DataDirect for ODBC driver handles this situation transparently to the user. The application does
not receive any errors on the connection attempt because the driver simply returns a connection from a
connection pool. The first time the connection handle is used to execute a SQL statement, the driver detects
that the physical connection to the server has been lost and attempts to reconnect to the server before executing
the SQL statement. If the driver can reconnect to the server, the result of the SQL execution is returned to the
application; no errors are returned to the application.

The driver uses connection failover option values, if they are enabled, when attempting this seamless
reconnection; however, it attempts to reconnect even if these options are not enabled.

Note: If the driver cannot reconnect to the server (for example, because the server is still down), an error is
returned indicating that the reconnect attempt failed, along with specifics about the reason the connection
failed.

The technique that Progress DataDirect uses for handling dead connections in connection pools allows for
maximum performance of the connection pooling mechanism. Some drivers periodically test the server with a
dummy SQL statement while the connections sit idle. Other drivers test the server when the application requests
the use of the connection from the connection pool. Both of these approaches add round trips to the database
server and ultimately slow down the application during normal operation.

117Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Handling dead connections in a pool

Connection pool statistics
Progress DataDirect has created a connection attribute to monitor the status of the DataDirect for ODBC connection
pools. This attribute, which is described in the following table, allows your application to fetch statistics for the
pool to which a connection belongs.

Table 16: Pool Statistics Connection Attribute

DescriptionConnection Attribute

Calling SQLGetConnectAttr (SQL_ATTR_POOL_INF,
SQL_GET_POOL_INFO) returns a PoolInfoStruct that contains the
statistics for the connection pool to which this connection belongs.
This PoolInfoStruct is defined in qesqlext.h. For
example:SQLGetConnectAttr(hdbc, SQL_ATTR_POOL_INFO,
PoolInfoStruct *,
SQL_LEN_BINARY_ATTR(PoolInfoStruct), &len);This is a
read-only connection attribute. The driver returns an error if
SQLSetConnectAttr (SQL_ATTR_POOL_INFO) is called.

SQL_ATTR_POOL_INFO Value:
SQL_GET_POOL_INFO

Summary of pooling-related options
The following table summarizes how connection pooling-related connection options work with the drivers. For
more detailed information, refer to "Connection option descriptions" in the user's guide for your driver.

Table 17: Summary: Connection Pooling Connection Options

CharacteristicOption

Enables connection pooling.Connection Pooling

Resets a connection that is removed from the connection pool to the initial
configuration settings of the connection.

Connection Reset

An integer value to specify the amount of time, in seconds, to keep connections
open in a connection pool.

Load Balance Timeout

An integer value to specify the maximum number of connections within a single
pool.

Max Pool Size

An integer value to specify the minimum number of connections that are opened
and placed in a connection pool when it is created.

Min Pool Size

Progress DataDirect for ODBC Drivers: Reference: Version November 2020118

Chapter 13: DataDirect connection pooling

14
Threading

The ODBC specification mandates that all drivers must be thread-safe, that is, drivers must not fail when
database requests are made on separate threads. It is a common misperception that issuing requests on
separate threads always results in improved throughput. Because of network transport and database server
limitations, some drivers serialize threaded requests to the server to ensure thread safety.

The ODBC 3.0 specification does not provide a method to find out how a driver services threaded requests,
although this information is useful to an application. All the Progress DataDirect ODBC drivers provide this
information to the user through the SQLGetInfo information type 1028.

The result of calling SQLGetInfo with 1028 is a SQL_USMALLINT flag that denotes the session’s thread model.
A return value of 0 denotes that the session is fully thread-enabled and that all requests use the threaded
model. A return value of 1 denotes that the session is restricted at the connection level. Sessions of this type
are fully thread-enabled when simultaneous threaded requests are made with statement handles that do not
share the same connection handle. In this model, if multiple requests are made from the same connection, the
first request received by the driver is processed immediately and all subsequent requests are serialized. A
return value of 2 denotes that the session is thread-impaired and all requests are serialized by the driver.

Consider the following code fragment:
rc = SQLGetInfo (hdbc, 1028, &ThreadModel, NULL, NULL);

If (rc == SQL_SUCCESS) {
 // driver is a DataDirect driver that can report threading information

 if (ThreadModel == 0)
 // driver is unconditionally thread-enabled; application can take advantage of
 // threading

 else if (ThreadModel == 1)
 // driver is thread-enabled when thread requests are from different connections
 // some applications can take advantage of threading

 else if (ThreadModel == 2)
 // driver is thread-impaired; application should only use threads if it reduces
 // program complexity

119Progress DataDirect for ODBC Drivers: Reference: Version November 2020

}
else
 // driver is not guaranteed to be thread-safe; use threading at your own risk

Progress DataDirect for ODBC Drivers: Reference: Version November 2020120

Chapter 14: Threading

15
WorkAround options

Progress DataDirect has included non-standard connection options (workarounds) that enable you to take full
advantage of packaged ODBC-enabled applications requiring non-standard or extended behavior.When using
workaround options, a separate user data source should be created for each application. We recommend that
you consult with Progress Technical Support for assistance.

On Windows, you can use the Extended Options field on the Advanced tab of the driver’s Setup dialog box to
set workaround options for most drivers. However, some drivers do not have the Extended Options field.

Alternatively, workaround options can be configured in the following way.

After you create the data source:

• On Windows, using the registry editor REGEDIT, open the
HKEY_CURRENT_USER\SOFTWARE\ODBC\ODBC.INI section of the registry. Select the data source
that you created.

• On UNIX/Linux/macOS, using a text editor, open the odbc.ini file to edit the data source that you created.

Add the string WorkArounds= (or WorkArounds2=) with a value of n (WorkArounds=n or WorkArounds2=n),
where the value n is the cumulative value of all options added together. For example, if you wanted to use both
WorkArounds=1 and WorkArounds=8, you would enter in the data source:

WorkArounds=9

Warning: Each of these options has potential side effects related to its use. An option should only be used to
address the specific problem for which it was designed. For example, WorkArounds=2 causes the driver to
report that database qualifiers are not supported, even when they are. As a result, applications that use qualifiers
may not perform correctly when this option is enabled.

121Progress DataDirect for ODBC Drivers: Reference: Version November 2020

The following list includes both WorkArounds and WorkArounds2.

WorkArounds=1. Enabling this option causes the driver to return 1 instead of 0 if the value for
SQL_CURSOR_COMMIT_BEHAVIOR or SQL_CURSOR_ROLLBACK_BEHAVIOR is 0. Statements are
prepared again by the driver.

WorkArounds=2. Enabling this option causes the driver to report that database qualifiers are not supported.
Some applications cannot process database qualifiers.

WorkArounds=8. Enabling this option causes the driver to return 1 instead of -1 for SQLRowCount. If an
ODBC driver cannot determine the number of rows affected by an Insert, Update, or Delete statement, it may
return -1 in SQLRowCount. This may cause an error in some products.

WorkArounds=16. Enabling this option causes the driver not to return an INDEX_QUALIFIER. For SQLStatistics,
if an ODBC driver reports an INDEX_QUALIFIER that contains a period, some applications return a "tablename
is not a valid name" error.

WorkArounds=32. Enabling this option causes the driver to re-bind columns after calling SQLExecute for
prepared statements.

WorkArounds=64. Enabling this option results in a column name of Cposition where position is the ordinal
position in the result set. For example, "SELECT col1, col2+col3 FROM table1" produces the column names
"col1" and C2. For result columns that are expressions, SQLColAttributes/SQL_COLUMN_NAME returns an
empty string. Use this option for applications that cannot process empty string column names.

WorkArounds=256. Enabling this option causes the value of SQLGetInfo/SQL_ACTIVE_CONNECTIONS to
be returned as 1.

WorkArounds=512. Enabling this option prevents ROWID results.This option forces the SQLSpecialColumns
function to return a unique index as returned from SQLStatistics.

WorkArounds=2048. Enabling this option causes DATABASE= instead of DB= to be returned. For some data
sources, Microsoft Access performs more efficiently when the output connection string of SQLDriverConnect
returns DATABASE= instead of DB=.

WorkArounds=65536. Enabling this option strips trailing zeros from decimal results, which prevents Microsoft
Access from issuing an error when decimal columns containing trailing zeros are included in the unique index.

WorkArounds=131072. Enabling this option turns all occurrences of the double quote character (") into the
accent grave character (`). Some applications always quote identifiers with double quotes. Double quoting can
cause problems for data sources that do not return SQLGetInfo/SQL_IDENTIFIER_QUOTE_CHAR =
double_quote.

WorkArounds=524288. Enabling this option forces the maximum precision/scale settings. The Microsoft
Foundation Classes (MFC) bind all SQL_DECIMAL parameters with a fixed precision and scale, which can
cause truncation errors.

WorkArounds=1048576. Enabling this option overrides the specified precision and sets the precision to 256.
Some applications incorrectly specify a precision of 0 for character types when the value will be
SQL_NULL_DATA.

WorkArounds=2097152. Enabling this option overrides the specified precision and sets the precision to 2000.
Some applications incorrectly specify a precision of -1 for character types.

WorkArounds=4194304. Enabling this option converts, for PowerBuilder users, all catalog function arguments
to uppercase unless they are quoted.

WorkArounds=16777216. Enabling this option allows MS Access to retrieve Unicode data types as it expects
the default conversion to be to SQL_C_CHAR and not SQL_C_WCHAR.

WorkArounds=33554432. Enabling this option prevents MS Access from failing when SQLError returns an
extremely long error message.

WorkArounds=67108864. Enabling this option allows parameter bindings to work correctly with MSDASQL.

Progress DataDirect for ODBC Drivers: Reference: Version November 2020122

Chapter 15: WorkAround options

WorkArounds=536870912. Enabling this option allows re-binding of parameters after calling SQLExecute for
prepared statements.

WorkArounds=1073741824. Enabling this option addresses the assumption by the application that ORDER
BY columns do not have to be in the SELECT list. This assumption may be incorrect for data sources such as
Informix.

WorkArounds2=2. Enabling this option causes the driver to ignore the ColumnSize/DecimalDigits specified
by the application and use the database defaults instead. Some applications incorrectly specify the
ColumnSize/DecimalDigits when binding timestamp parameters.

WorkArounds2=4. Enabling this option reverses the order in which Microsoft Access returns native types so
that Access uses the most appropriate native type. Microsoft Access uses the last native type mapping, as
returned by SQLGetTypeInfo, for a given SQL type.

WorkArounds2=8. Enabling this option causes the driver to add the bindoffset in the ARD to the pointers
returned by SQLParamData. This is to work around an MSDASQL problem.

WorkArounds2=16. Enabling this option causes the driver to ignore calls to SQLFreeStmt(RESET_PARAMS)
and only return success without taking other action. It also causes parameter validation not to use the bind
offset when validating the charoctetlength buffer. This is to work around a MSDASQL problem.

WorkArounds2=24. Enabling this option allows a flat-file driver, such as dBASE, to operate properly under
MSDASQL.

WorkArounds2=32. Enabling this option appends "DSN=" to a connection string if it is not already included.
Microsoft Access requires "DSN" to be included in a connection string.

WorkArounds2=128. Enabling this option causes 0 to be returned by
SQLGetInfo(SQL_ACTIVE_STATEMENTS). Some applications open extra connections if
SQLGetInfo(SQL_ACTIVE_STATEMENTS) does not return 0.

WorkArounds2=256. Enabling this option causes the driver to return Buffer Size for Long Data on calls to
SQLGetData with a buffer size of 0 on columns of SQL type SQL_LONGVARCHAR or SQL_LONGVARBINARY.
Applications should always set this workaround when using MSDASQL and retrieving long data.

WorkArounds2=512. Enabling this option causes the flat-file drivers to return old literal prefixes and suffixes
for date, time, and timestamp data types. Microsoft Query 2000 does not correctly handle the ODBC escapes
that are currently returned as literal prefix and literal suffix.

WorkArounds2=1024. Enabling this option causes the driver to return "N" for
SQLGetInfo(SQL_MULT_RESULT_SETS). ADO incorrectly interprets SQLGetInfo(SQL_MULT_RESULT_SETS)
to mean that the contents of the last result set returned from a stored procedure are the output parameters for
the stored procedure.

WorkArounds2=2048. Enabling this option causes the driver to accept 2.x SQL type defines as valid. ODBC
3.x applications that use the ODBC cursor library receive errors on bindings for SQL_DATE, SQL_TIME, and
SQL_TIMESTAMP columns. The cursor library incorrectly rebinds these columns with the ODBC 2.x type
defines.

WorkArounds2=4096. Enabling this option causes the driver to internally adjust the length of empty strings.
The ODBC Driver Manager incorrectly translates lengths of empty strings when a Unicode-enabled application
uses a non-Unicode driver. Use this workaround only if your application is Unicode-enabled.

WorkArounds2=8192. Enabling this option causes Microsoft Access not to pass the error -7748. Microsoft
Access only asks for data as a two-byte SQL_C_WCHAR, which is an insufficient buffer size to store the UCS2
character and the null terminator; thus, the driver returns a warning, "01004 Data truncated" and returns a null
character to Microsoft Access. Microsoft Access then passes error -7748.

123Progress DataDirect for ODBC Drivers: Reference: Version November 2020

Progress DataDirect for ODBC Drivers: Reference: Version November 2020124

Chapter 15: WorkAround options

	Copyright
	Table of Contents
	Welcome to the Progress DataDirect for ODBC Drivers Reference
	What is ODBC?
	How does it work?
	Why do application developers need ODBC?

	Troubleshooting
	Diagnostic tools
	ODBC trace
	Creating a trace Log
	Enabling tracing
	Windows ODBC Administrator
	System information (odbc.ini) file
	macOS iODBC Administrator

	Test loading tool
	ODBC Test
	iODBC Demo and iODBC Test
	Logging for Java components
	Loggers and logging levels
	Driver to SQL communication logger
	SQL engine logger
	Wire protocol adapter logger

	Configuring logging
	Using the JVM
	Using the driver

	The demoodbc Application
	The example application
	Enabling debug record mode
	Other tools

	Error messages
	Troubleshooting issues
	Setup/connection issues
	Troubleshooting the issue

	Interoperability issues
	Troubleshooting the issue

	Performance issues

	Failover
	Connection failover
	Extended connection failover
	Select connection failover
	Guidelines for primary and alternate servers
	Using client load balancing
	Using connection retry
	Summary of failover-related options
	A connection string example
	An odbc.ini file example

	Client information
	How databases store client information
	Storing client information

	Code page values
	IANAAppCodePage values
	IBM to IANA code page values
	Teradata code page values

	ODBC API and scalar functions
	API functions
	Scalar functions
	String functions
	Numeric functions
	Date and time functions
	System functions

	Internationalization, localization, and Unicode
	Internationalization and Localization
	Locale
	Language
	Country
	Variant

	Unicode character encoding
	Background
	Unicode support in databases
	Unicode support in ODBC

	Unicode and non-Unicode ODBC drivers
	Function calls
	Unicode application with a non-Unicode driver
	Unicode application with a Unicode driver

	Data
	Unicode driver
	ANSI driver

	Default Unicode mapping
	Connection attribute for Unicode

	Driver Manager and Unicode encoding on UNIX/Linux
	References

	Character encoding in the odbc.ini and odbcinst.ini files

	Designing ODBC applications for performance optimization
	Using catalog functions
	Caching information to minimize the use of catalog functions
	Avoiding search patterns
	Using a dummy query to determine table characteristics

	Retrieving data
	Retrieving long data
	Reducing the size of data retrieved
	Using bound columns
	Using SQLExtendedFetch instead of SQLFetch
	Choosing the right data type

	Selecting ODBC functions
	Using SQLPrepare/SQLExecute and SQLExecDirect
	Using arrays of parameters
	Using the cursor library

	Managing connections and updates
	Managing connections
	Managing commits in transactions
	Choosing the right transaction model
	Using positioned updates and deletes
	Using SQLSpecialColumns

	Using indexes
	Introduction
	Improving row selection performance
	Indexing multiple fields
	Deciding which indexes to create
	Improving join performance

	Locking and isolation levels
	Locking
	Isolation levels
	Locking modes and levels

	SSL encryption cipher suites
	DataDirect Bulk Load
	DataDirect Bulk Load functions
	Utility functions
	GetBulkDiagRec and GetBulkDiagRecW

	Export, validate, and load functions
	ExportTableToFile and ExportTableToFileW
	ValidateTableFromFile and ValidateTableFromFileW
	LoadTableFromFile and LoadTableFromFileW
	Using the TableName parameter with the Salesforce driver
	SetBulkOperation (Salesforce driver only)
	GetBulkOperation (Salesforce driver only)

	DataDirect Bulk Load statement attributes
	SQL_BULK_EXPORT_PARAMS
	SQL_BULK_EXPORT

	DataDirect connection pooling
	Creating a connection pool
	Adding connections to a pool
	Removing connections from a pool
	Handling dead connections in a pool
	Connection pool statistics
	Summary of pooling-related options

	Threading
	WorkAround options

