
StarSQL™ for Java
User’s Guide

Version 2.7

Statement of Limitations on Warranty & Liability

StarQuest Ventures makes no representations or warranties about the suitability
of the software and documentation, either expressed or implied, including but not
limited to the implied warranties of merchantability, fitness for a particular
purpose, or non-infringement. StarQuest Ventures shall not be liable for any
damages suffered by licensee as a result of using, modifying, or distributing this
software or its derivatives.

StarSQL™ is a trademark of StarQuest Ventures, Inc.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.
All trademarks or registered trademarks are the property of their respective
owners.

© Copyright 1996–2020 by StarQuest Ventures, Inc.
All rights reserved.

v2.7_01.03.2020

Contents
Introduction . 7
Overview of JDBC . 7
Overview of StarSQL for Java . 9

Automatic Package Binding. 9
Data Source Support . 10
DISTINCT UDT Support. 10
LOB Data Type Support. 10
Java EE Support . 10
Derby Support . 10
SSL Support . 11
Global Transaction Support . 11
Scrollable Cursor Support . 11
Encrypted Password Support . 11
European Date and Decimal Notation Support . 12
International Language Support. 12
Tracing and Logging Information . 12

StarSQL for Java Operating Environment . 12
System Requirements. 12

Java Environment . 12
Host Database Management Systems . 13

Common Network Topologies . 13
Documentation . 16

Quick Path to Using StarSQL . 16
StarSQL Product Documentation. 16

User’s Guide . 16
Release Notes . 16

Contacting StarQuest . 17
Support . 17
Sales and Service . 17

Installing StarSQL for Java . 19
Installation on a UNIX-Based Computer . 19

Installation on AIX, HP-UX, Linux, or Solaris . 19
StarSQL for Java User’s Guide 3

Contents
Installation on Mac OS X. 20
Installation on z/OS . 20
Installation on IBM i . 20

PASE . 20
QSHELL . 21

Installation on a Windows-Based Computer . 21
Setting the Classpath and Environment Variables . 21

Setting the Classpath . 22
Setting Environment Variables. 22

Licensing StarQuest Products. 23
Node-Locked License . 23
Floating License. 24
Configuring a License . 24

License Configuration File Format. 25
Configuring a Client to Use a Floating License . 26

Configuring a Client to Use a Node-Locked License . 28
Online Licensing. 28
Manually Adding a License Key . 28

Using StarSQL for Java. 29
Configuring and Loading the StarSQL for Java Driver 29

StarSQL for Java Configuration Properties . 29
accounting Parameter . 32
catalogFilter Parameter . 32
collection Parameter . 32
commitProcedureCall Parameter . 33
createTable Parameter . 33
databaseName Parameter . 34
dateFormat Parameter . 34
decimalDelimiter Parameter . 35
defaultQualifier Parameter . 35
description Parameter . 35
diagnosticsLevel Parameter . 36
drdaTrace Parameter . 36
dynamicRules Parameter . 36
fullyMaterializeCLOB Parameter. 37
heldCursors Parameter . 37
keepDynamic Parameter . 38
newPassword Parameter . 38
password Parameter . 38
portNumber Parameter . 38
productID Parameter. 38
4 StarSQL for Java User’s Guide

Contents
pwdEncryption Parameter . 39
sendUnicode Parameter . 39
serverName Parameter . 40
ssl Parameter. 40
typdefovr Parameter . 40
user Parameter . 40

Using the JDBC Driver Interface . 41
Using the Connection URL . 41
Using Data Sources . 42

Displaying StarSQL Driver Information . 44
Testing a StarSQL/DRDA Connection . 44
The StarSQL for Java Sample Applications . 46

Running the Sample Applications . 47
Running the CreateDS Sample Application . 47
Specifying Connection Information . 51
Running the CatalogApp Sample Application . 52
Running the LobTestApp Sample Application. 54
Running the QueryApp Sample Application . 59

Building the Sample Applications . 62
Building the Sample Applications Using a Batch or Script File 62
Building the Sample Applications Using an IDE. 63

Managing Two-Phase Commit Transactions . 66

Preparing Hosts for StarSQL Access. 69
Preparation Required for All Hosts . 69

User Accounts . 69
Permissions . 70

Preparing DB2 on a z/OS Host . 70
Configuring DDF. 70
Starting DDF . 71
Supporting Password Management Using DRDA Flows 72
Using StarSQL with Stored Procedures. 72

Registering Stored Procedures . 72
Calling Stored Procedures . 73

Preparing a DB2 for i Host . 74
Creating a Library for SQL Packages . 74
Determining the Database Name. 74
Enabling DRDA Over TCP/IP . 75
Registering Stored Procedures on DB2 for i . 76
Configuring Support for the SSL Protocol . 76
Considerations for Specific IBM i Releases . 77

IBM i 6.1 Issues . 77
StarSQL for Java User’s Guide 5

Contents
OS/400 v5r4 Issues . 77
Preparing a DB2 LUW Host. 78

Enabling DRDA Support for TCP/IP. 78
Using db2 Commands to Specify the DRDA Port . 78

Enabling Encryption . 79
Using db2 Commands to Enable Encryption . 79

Locating the Database Name . 80
Preparing a Derby Network Server Host . 80

Setting Network Server Properties. 80
Enabling Remote Connections . 81
Configuring Support for the SSL Protocol . 81

Configuring the StarSQL for Java for Derby Connections 82
Preparing a DB2 Server for VSE & VM . 82

Binding Packages . 85
Using Dynamic SQL Packages . 85
Permissions Required for Packages . 88

For Binding Packages . 88
For Using Packages . 89
Granting Use Permissions . 90

For DB2 for z/OS . 90
For DB2 for LUW (Linux, UNIX & Windows) . 90
For DB2 for i. 90

Derby Held Cursors Packages . 91
National Language Support 93

Determining the Default Character Set of the Client . 94
Determining Which Character Set Conversions are Supported 94

Troubleshooting Tips and Techniques 101
Troubleshooting Communication Problems. 101

Configuring the Logging Facility . 102
Disabling the Logging Facility . 105
Sample Logging Configuration File . 105

Optimizing Java on an IBM i Computer . 106

Glossary . 109
6 StarSQL for Java User’s Guide

CHAPTER 1 Introduction
StarSQL is available as an ODBC driver for Windows- and UNIX-based computers, and
as a JDBC driver for any computer that has the Java Runtime Engine (JRE) or Java
Virtual Machine (JVM) installed.

The StarSQL software is not copy protected, rather the usage is limited based upon the
maximum number of concurrent connections (“CCs”) licensed. The StarQuest license
allows for you to install and run any of the StarSQL drivers on any number of client
computers, subject to terms of the license grant. CCs may be made available for clients
on a single computer (“Node-locked License”) or any computer on the network
(“Floating License”).

The StarSQL for Java driver is a type 4 (Direct-to-Database pure Java) JDBC driver that
provides direct access to the entire range of IBM DB2 database systems. It converts
JDBC calls into the Distributed Relational Database Architecture (DRDA) protocol
used by IBM DB2 host database systems. It uses the TCP/IP network protocol to
communicate directly to host systems that implement DRDA over TCP/IP.

StarSQL for Java provides a native-protocol pure Java driver (“type 4” JDBC driver)
that implements Oracle’s JDBC application program interface (API). This version of
StarSQL for Java supports the JDBC 3.0 API.

Overview of JDBC
JDBC is a Java API for executing SQL statements, which provides connectivity
between Java-based applications or applets to database systems. The Java API consists
of a set of classes and interfaces written in the Java programming language.

JDBC provides a standard API, based on the ANSI SQL-92 standard, that allows
database developers to directly invoke SQL commands. The JDBC API is expressed as
a series of abstract Java interfaces that allow an application programmer to open
StarSQL for Java User’s Guide 7

Introduction
connections to particular databases, execute SQL statements, and process the results.
The StarSQL for Java driver provides the implementations of the abstract classes
provided by the JDBC API.

There are four types of JDBC drivers, as described in Table 1 on page 8.

Table 1. JDBC Driver Types

A type 4 native-protocol/all-Java driver provides significant advantages over the other
driver types. Since there is no translation of database requests to ODBC or a native
connectivity interface, a type 4 driver provides better performance than types 1 and 2.
And a type 4 driver requires no special software on the client or host as with a type 3
driver. The StarSQL for Java driver provides fast, direct, platform-independent
communication between client applications and DRDA host database systems.

Driver Type Description
Pure
Java

Net
Protocol

Type 1:
JDBC-ODBC
Bridge

Provides JDBC access via ODBC
drivers. Note that the Oracle JDBC-
ODBC Bridge has been deprecated as
of JRE 8.

No Direct

Type 2:
Native-API

Converts JDBC calls into calls on the
client API for a specific DBMS. The
client code typically is a library of
platform-specific code (such as C or
C++) that is accessed via the Java
Native Interface (JNI).

No Direct

Type 3:
JDBC-Net

Translates JDBC calls into a DBMS-
independent net protocol, which a server
then translates to a DBMS protocol. The
server could be any of the four driver
types. The net server middleware
connects the Java clients to a variety of
databases.

Yes Requires
connector
(RMI,
CORBA,
etc.)

Type 4:
Native Protocol

Converts JDBC calls into the network
protocol used by specific database
systems, which allows client
applications direct access to the
database system.

Yes Direct
8 StarSQL for Java User’s Guide

Introduction
Overview of StarSQL for Java
StarSQL for Java allows communication with any host that supports DRDA protocols
over TCP/IP. StarSQL for Java supports the JDBC 3.0 API, and includes the following
major features:

• automatic package binding

• support for data sources

• support for the DISTINCT user-defined type (UDT)

• support for LOB (large object) data types

• support for the Java Enterprise Edition (Java EE)

• support for Derby, the Apache Software Foundation’s open-source
relational database

• support for the Secure Sockets Layer (SSL) protocol

• support for global (two-phase) transactions

• support for scrollable cursors

• support for encrypted passwords

• support for European date formats and decimal notation in numeric
values

• international language support

• extensive DRDA tracing and logging information

This release of StarSQL for Java supports stored procedures but does not support static
SQL.

Automatic Package Binding

StarSQL for Java uses the same dynamic SQL packages on the host as the StarSQL
ODBC driver, unless you want to use features that are unique to the Java driver, such as
the dateFormat property (see "dateFormat Parameter" on page 34). On the initial
connection with the host, the StarSQL for Java driver searches for the required packages
and, if it does not find them, it creates them automatically. The names and locations of
the packages that are bound varies, depending on the configuration settings in the JDBC
data source that are in effect when the initial connection is made.

Packages also can be created explicitly using the StarAdmin utility that is available
from StarQuest as a separate download.
StarSQL for Java User’s Guide 9

Introduction
Data Source Support

An application can use a data source to load StarSQL for Java and connect to a database.
A data source is associated with a JDBC provider that supplies the specific JDBC driver
implementation class. You can create multiple data sources that are associated with the
same JDBC provider. See "Using Data Sources" on page 43 for more information about
defining data sources.

DISTINCT UDT Support

StarSQL for Java supports the SQL3 DISTINCT user-defined type (UDT). A
DISTINCT data type shares its internal representation with a built-in data type—the
source type to which it is mapped. Typically, a SQLData implementation defines a
field for each attribute of a SQL structured type or a single field for a SQL DISTINCT
type. When a DISTINCT data type is retrieved from a data source, it is mapped as an
instance of the SQLData class, and can be manipulated like other objects in the Java
programming language.

LOB Data Type Support

Large objects (LOBs) can contain text documents, images, or even movies, and can be
stored directly in the DBMS. The StarSQL for Java driver supports working with DB2
LOB data types.

Java EE Support

The Java Enterprise Edition (Java EE) technology and its component-based model
provide Web services and an infrastructure that can help to integrate enterprise
applications. StarSQL for Java supports the Java EE environment, allowing you to use it
in conjunction with popular Web servers such as IBM WebSphere® and Oracle/BEA
WebLogic®. You can configure data sources using the Web server that allow Enterprise
Java Beans (EJBs) to use StarSQL for Java to communicate with the DB2 system.

Derby Support

Derby is a full-featured, open source relational database system that is based on Java
and SQL standards. IBM contributed the original Java database, Cloudscape, as open
source to the Apache Software Foundation (ASF) in 2004 and continues to include it
with some of its Web-oriented software bundles. The ASF open-source Apache Derby
project flourished with support from community members such as IBM, Sun
Microsystems, and Oracle to receive widespread adoption. A supported implementation
10 StarSQL for Java User’s Guide

Introduction
of Derby is available from Oracle as Java DB. See http://www.oracle.com/technetwork/
java/javadb/documentation/index.html and http://db.apache.org/derby/ for more
information.

SSL Support

The StarSQL for Java driver can be configured to support the Secure Sockets Layer
(SSL) protocol. The SSL protocol operates above TCP/IP and below higher-level
protocols such as HTTP, LDAP, or IMAP. It allows an SSL-enabled server to
authenticate itself to an SSL-enabled client, allows the client to authenticate itself to the
server, and allows both computers to establish an encrypted connection. To enable the
StarSQL for Java driver to use SSL protocol, configure the SSL property, as described
in "StarSQL for Java Configuration Properties" on page 29. You also need to configure
the host system to use the SSL protocol, as described in the chapter "Preparing Hosts for
StarSQL Access" on page 69.

Global Transaction Support

In a distributed processing environment where a unit of work spans more than one
database, using the two-phase commit protocol can help ensure the integrity of the
transaction and databases. When the two-phase commit protocol is in effect, the
transaction must complete successfully before it is committed. If the transaction fails,
all of the updates are rolled back and the databases remain in the state they were before
the transaction was begun. StarSQL for Java includes a Transaction Log Manager
application to help you manage two-phase commit transactions over a TCP/IP network,
as described in "Managing Two-Phase Commit Transactions" on page 67.

Scrollable Cursor Support

StarSQL for Java supports scrollable cursors to DB2 for z/OS and to DB2 LUW.

Encrypted Password Support

The default behavior of StarSQL for Java is to send passwords in clear text to the host
computer. Many versions of DB2 support password encryption or successfully negotiate
the use of password encryption (see "StarSQL for Java Operating Environment" on page
12 for details about which versions). If the host database supports encrypted passwords,
you can enable the password encryption feature as described in "pwdEncryption
Parameter" on page 39.
StarSQL for Java User’s Guide 11

http://db.apache.org/derby/
http://www.oracle.com/technetwork/java/javadb/documentation/index.html
http://www.oracle.com/technetwork/java/javadb/documentation/index.html
http://www.oracle.com/technetwork/java/javadb/documentation/index.html

Introduction
European Date and Decimal Notation Support

StarSQL for Java supports applications that use European date formats in SQL strings
and the getString() and setString() methods, as described for the "dateFormat
Parameter" on page 34. It also supports using a comma as the decimal notation in
numeric data types, as explained for the "decimalDelimiter Parameter" on page 35.

International Language Support

StarSQL provides character set conversion to support most languages. "National
Language Support" on page 93 lists the supported languages.

Tracing and Logging Information

StarSQL for Java allows you to capture trace and log information about the DRDA and
API communications. To trace DRDA operations, you load the StarSQL for Java driver
with the drdaTrace property enabled, as described in "drdaTrace Parameter" on page 37.
The section "Configuring the Logging Facility" on page 102 describes how to configure
the logging facility to capture the desired level of information to a file and/or to display
logging messages on the computer console.

StarSQL for Java Operating Environment
You can install and use the StarSQL for Java driver on any computer that has the Java
Development Kit (JDK) or Java Runtime Environment (JRE) installed. The data
accessed through StarSQL for Java resides in a DB2 database on a host computer.
StarSQL for Java requires a physical network and network software for communication
between the desktop computer and the host.

System Requirements

This section describes the Java environment and the host systems that can be used with
the StarSQL for Java driver.

Java Environment

StarSQL for Java runs on any system with a Java Virtual Machine (JVM) that is
equivalent to that contained in the Java Development Kit (JDK) or the Java Runtime
Environment (JRE) v1.5 or later.

You can download the latest JRE from http://www.oracle.com/technetwork/java/
index.html or use another compatible JRE or JDK, such as the IBM JRE.
12 StarSQL for Java User’s Guide

Introduction
Host Database Management Systems

StarSQL for Java can connect to any of the following host databases:

• Apache Derby (JavaDB) 10.3 or later

• DB2 for z/OS v9 & later

• DB2 for i (formerly known as DB2/400, DB2 UDB for iSeries, and DB2
for i5/OS) v5r4 & later

• DB2 for Linux, UNIX, and Windows (LUW) v9.7 and later

"Preparing Hosts for StarSQL Access" on page 69 provides information on configuring
the host system.

Common Network Topologies

The following diagrams illustrate some common network topologies used with StarSQL
for Java.

Figure 1 shows StarSQL for Java installed on a client computer for use with a locally
installed Java application. In this scenario StarSQL for Java can access data source
configuration information on the client computer to connect to any host that supports
DRDA over TCP/IP.
StarSQL for Java User’s Guide 13

Introduction
Figure 1. StarSQL for Java on Client Computer
14 StarSQL for Java User’s Guide

Introduction
As depicted in Figure 2, the StarSQL for Java driver also can used in a three-tier
architecture, in which the user interface (Presentation layer), the functional process
logic (Logic layer), and the data storage and access (Data layer) are developed and
maintained as independent modules. With this configuration the StarSQL for Java driver
is downloaded with a Java applet from an application web server such as Apache,
ColdFusion, JBoss, or WebSphere. This client-server architecture restricts the client
connection to the host from which the applet is downloaded due to Java security
constraints on downloaded applets.

Figure 2. StarSQL for Java Provides Middleware for 3-Tier Architecture
StarSQL for Java User’s Guide 15

Introduction
Documentation
There are many sources of information that can help you install, configure, and use the
StarSQL driver. The following sections describe the information available from
StarQuest and provides references to other information that may be particularly useful.

Quick Path to Using StarSQL

StarQuest provides StarSQL Quick Start Guides that provide step-by-step instructions
for quickly installing and using the StarSQL ODBC and JDBC driver on a particular
computing platform. The procedures in the Quick Start Guides are appropriate for the
most common environments and describe the fastest way to install and configure the
software you need to begin using the driver. If you need to customize the StarSQL
driver settings or have an environment for which the default values are not appropriate
you can refer to the product documentation for details.

All the Quick Start Guides are listed at http://west.comww.starqu/docs/Supportdocs/
browseQuickStarts.shtml.

StarSQL Product Documentation

The StarSQL for Java product documentation consists of the following components:

• this User’s Guide

• Release Notes

• Technical documents (Info Center website)

User’s Guide

This User’s Guide provides information about installing the StarSQL software, and
configuring a client license to use the driver. It also describes how to use the StarSQL
driver and the utilities and programs that are included with it. Licensing is managed by
StarLicense server software, which includes separate documentation for installing and
configuring a StarLicense server.

Release Notes

The Release Notes contain important information about using StarSQL for Java in
specific environments, known limitations or issues, and a history of changes to the
driver software.
16 StarSQL for Java User’s Guide

http://www.starquest.com/Supportdocs/browseQuickStarts.shtml

Introduction
Contacting StarQuest
Please use the following methods to contact StarQuest Ventures if you need to obtain a
license key, or have suggestions or need information about StarQuest products.

Support

To obtain a license key for your product, send an email to support@starquest.com with
the following information:

• TCP/IP address or Host ID of the computer on which the license will be
installed

• Number of connections purchased

• Company Name

• Contact Name

• Phone Number

• Email Address

StarQuest Support will send a reply email that provides the license key for your
organization's use of the product. Since the license is unique to the computer on which it
will be installed, you must contact StarQuest should you need to move the license from
one computer to another.

Additional technical support may be available subject to the prices, terms, and
conditions specified in your organization's maintenance contract with StarQuest
Ventures, Inc.

Sales and Service

If you have ideas for product enhancements or need more information about how
StarQuest products can provide solutions for connecting Mac OS X, Windows, and
UNIX applications to IBM host resources, please contact us via any of the following
methods.

Address StarQuest Ventures, Inc.
548 Market St, #22938
San Francisco, CA 94104-5401

Telephone 415-669-9619

Option 1: Sales

Option 2: Technical Support
StarSQL for Java User’s Guide 17

Introduction
Fax 415-669-9639

Email support@starquest.com

World Wide Web www.starquest.com

support.starquest.com
18 StarSQL for Java User’s Guide

http://support.starquest.com
http://www.starquest.com

CHAPTER 2 Installing StarSQL for Java
This chapter describes how to install StarSQL for Java and set the environment
variables required for using the driver. As a pure Java, type 4 driver, StarSQL for Java
typically is installed on a client machine as a .jar file. When used with locally installed
Java applications, StarSQL for Java can access the client file system to retrieve data
source configuration information. It also can connect to any host that supports DRDA
over TCP/IP. StarSQL for Java can be downloaded with a Java applet by a Web browser,
however, security constraints placed on applets might restrict the driver’s access to just
the host from which it was downloaded.

Follow the instructions below, as appropriate to the type of operating system the
computer is running, to install StarSQL for Java. Be sure to review the Release Notes
included in the distribution for important information about installing or upgrading the
StarSQL for Java driver.

Installation on a UNIX-Based Computer
The procedures for installing StarSQL for Java on a UNIX-based computer vary
depending on the version of UNIX and the type of computer. The following sections
describe how to install StarSQL for Java for the various UNIX platforms.

Installation on AIX, HP-UX, Linux, or Solaris

StarSQL for Java is distributed as an rpm file for installation by the RPM Package
Manager, and as a tar file that uses a setup script for installation on UNIX or Linux
computers that do not support RPM. To use either of these methods you run the setup
shell script. The setup script extracts the contents of the starjdbc.tar file or
invokes rpm when using the RPM installer.

1 . Edit the setup shell script if you want to install the StarSQL JDBC driver to a
location other than the default directory (/usr/lpp/starsql_java for
AIX, /usr/share/starsql_java for Linux, /opt/starsql_java
for HP-UX or Solaris).
StarSQL for Java User’s Guide 19

Installing StarSQL for Java
2. Copy the files setup and starsql_jdbc.tar to the UNIX computer.

3. Enter the following command to run the setup shell script.

./setup

After installing the driver, you can delete the setup and starsql_jdbc.tar files.

Installation on Mac OS X

To install StarSQL for Java on a Mac OS X computer, use the Finder to open the folder
that contains the UNIX installer and double-click setup-mac.command. Alternatively,
you can open a Terminal window from Applications/Utilities and use the standard
UNIX installation and operation procedures. The default directory for installing
StarSQL for Java on a Mac OS X computer is /Applications/starsql_java.

Installation on z/OS

To install StarSQL for Java under UNIX System Services on IBM OS/390 or z/OS, use
the UNIX installer and run setup.ebcdic. The installer converts text files, such as shell
scripts and Java source to EBCDIC so they can be used by OS/390 or z/OS.

1 . Copy the files setup.ebcdic and starsql_jdbc.tar to the computer.

2. Enter the following command to run the setup.ebcdic shell script.

./setup.ebcdic

After installing the driver, you can delete the setup.ebcdic and
starsql_jdbc.tar files.

Installation on IBM i

On an IBM i computer you can use either QSHELL or the Portable Application
Solutions Environment (PASE) to extract the contents of the StarSQL for Java tarfile
without conversion, as shown below. Do not use the tar command with QSHELL as it
will corrupt the JAR files by attempting to convert the binary files.

PASE

1 . Enter the command CALL QP2TERM to start PASE.

2. Enter the command tar xf /tmp/starsql_java_unix.tar to extract the
distribution.

3. Using the UNIX installer, enter the following command to run the setup shell
script.

./setup
20 StarSQL for Java User’s Guide

Installing StarSQL for Java
QSHELL

1 . Enter the command QSH or STRQSH to start QSHELL.

2. Enter the command pax -C 819 -r -f /tmp/starsql_java_unix.tar to extract the
distribution.

3. Using the UNIX installer, enter the following command to run the setup shell
script.

./setup

Installation on a Windows-Based Computer
To install StarSQL for Java on a Windows computer, be sure you are logged in as
Administrator or a member of the Administrator group as the installation program needs
to add a variable to the Windows environment variables.

1 . Double click the StarSQL for Java SETUP program to launch the Windows
installation program.

2. Respond to the installation prompts as appropriate. If you select the Custom
Setup option you can choose which components to install and the location. The
default installation directory is C:\Program
Files\StarQuest\StarSQL_Java\. Make a note of the location if you
change it.
Since the StarSQL for Windows installer is a 32-bit installer, the actual
installation directory on a 64-bit system will be C:\Program Files
(x86)\StarQuest\StarSQL_Java\.

The Windows installation program automatically sets environment variables that are
needed to run StarSQL for Java. If you are installing from a terminal client session, you
may need to log in again for the environment variables to take effect. Command
windows must be re-opened for the environment variable change to take effect.

On a 64-bit system, the Windows installer will install both 32-bit and 64-bit versions of
the licensing support files.

Setting the Classpath and Environment Variables
To use the StarSQL for Java driver, you must have a compatible JDK or JRE installed
(see "System Requirements" on page 12 for details). You can use the java -version
command to display information about the installed JRE or JVM. If the path to your
JDK or JRE is not specified as an environment variable, add the bin directory to your
PATH environment variable (for example, C:\Program
Files\Java\jre1.8.0_161\bin), or provide the complete path as you enter the
java -version command, as shown below.
StarSQL for Java User’s Guide 21

Installing StarSQL for Java
C:\Program Files\Java\jre1.8.0_161\bin>java -version

The java -version command displays information similar to the following:

java version "1.8.0_161"
Java(TM) SE Runtime Environment (build 1.8.0_161-b12)
Java HotSpot(TM) 64-Bit Server VM (build 25.161-b12, mixed
mode)

Setting the Classpath

You need to specify the location of the jar files for the StarSQL for Java driver and any
applications that you want to use with it. You can specify these locations in the
CLASSPATH environment variable, or with the classpath argument of the java
command. If you install StarSQL for Java on a Mac OS X computer, the installation
program automatically creates a symbolic link to StarSQL_JDBC.jar in /Library/Java/
Extensions.

The location of the jar file for the StarSQL for Java driver may be specified in the
CLASSPATH variable on a Windows-based computer as shown below:

.;”C:\Program Files\StarQuest\StarSQL_Java\StarSQL_JDBC.jar”

On a UNIX-based computer, the CLASSPATH variable may be specified as shown
below:

CLASSPATH=/opt/starsql_java/StarSQL_JDBC.jar

You also can use the CLASSPATH argument of the java command to specify the
location of class or jar files. The following examples specify the location of the StarSQL
for JDBC driver, assuming that you install it to the default location.

On a Windows-based computer:

java -classpath “C:\Program
Files\StarQuest\StarSQL_Java\StarSQL_JDBC.jar”

On a UNIX-based computer:

java -classpath $CLASSPATH:/opt/starsql_java/StarSQL_JDBC.jar.

Setting Environment Variables

To run the StarSQL for Java sample applications, set the environment variable
$STARSQL_JAVA (%STARSQL_JAVA% for Windows) to the location where StarSQL
for Java is installed. The Windows installation automatically sets this environment
variable. For UNIX users this environment variable can be set in a system-wide profile
file or in each user’s .profile, .login, or .cshrc file.
22 StarSQL for Java User’s Guide

Installing StarSQL for Java
To use the sample applications that are distributed with StarSQL for Java with an X
Windows server running on a Mac OS X, UNIX, or Windows computer, you must set
the DISPLAY environment variable, such as:

export DISPLAY=myworkstation:0

On an IBM i computer, you also need to configure the Java system properties to use the
Native Abstract Windowing Toolkit (NAWT). Create a file in your home directory
named SystemDefault.properties, or create a system-wide file named
/QIBM/UserData/Java400/SystemDefault.properties that contains the
following statement:

os400.awt.native=true

To invoke Java using the Portable Application Solutions Environment (PASE) on an
IBM i computer, set the QIBM_JAVA_PASE_ALLOW_PREV environment variable as
shown below.

export QIBM_JAVA_PASE_ALLOW_PREV=1

Licensing StarQuest Products
All StarQuest products are licensed for use. Each product setup contains a client module
used to configure the specific license option used to enforce the use of the product. The
licensing options allow you to use a node-locked license or a floating license.

Node-Locked License

A node-locked license allows you to use the Product on a single computer: Node-
locked licenses are only available for computers using Microsoft Windows Operating
Systems. With a node-locked license:

• The computer is identified by a unique Host ID.

• The product can run only on the identified computer.

• The product usage may not exceed the limits allowed by the license.

In addition to the setup of the StarQuest product you will be provided with a unique
registration code that should be used for the activation of the software license. It is also
possible to use the client module to display the HOSTID to request a software license
via email or telephone.

The software license should be activated online using the supplied registration code, or
manually after communicating a HOSTID with StarQuest and receiving an email
response containing a license string.
StarSQL for Java User’s Guide 23

Installing StarSQL for Java
Floating License

A floating license allows multiple computers using a StarQuest product to share use of
the software license. The software license can be used on any computer within a
network provided that the number of concurrent requests does not exceed the limit
allowed by the license. All StarQuest products for UNIX and Mac OS X must use a
floating license. StarQuest products for Windows may use a floating license. Generally,
only one license server need be installed on a network, to service any number of clients.

For a floating license, in addition to the setup of StarQuest product you will be provided
with a StarLicense Server setup and a unique registration code to activate the license
server. The StarLicense Server for UNIX User’s Guide contains details about installing
and configuring the server software, but in general:

• The StarLicense Server software should be installed on a network server.

• The network server is usually identified by a unique, static IP address.

• The StarLicense Server should be activated online or via e-mail.

• The StarLicense Server controls the total number of concurrent
connections within the network.

For a client to obtain a license from a StarLicense server the parameters of the network
server where the StarLicense Server is installed are specified in the appropriate client
license module on any computer using the StarQuest product.

Configuring a License

StarQuest issues a unique License Key that specifies the number of connections that are
allowed and the duration of the license. StarSQL for Java uses a file named
StarLicense.properties to obtain information about the StarQuest license to
use for the connection.

The StarSQL driver uses the following order and locations to find the
StarLicense.properties file.

1 . the location specified by the CLASSPATH (java.class.path)

2. in the JRE library directory (java.home/lib)

If it fails to find a StarLicense.properties file, StarSQL attempts to check out
a license from a StarLicense server with a hostname of starlic (Windows computers) or
127.0.0.1 (UNIX computers) that listens for connections on port 4999.

You can edit the StarLicense.properties file to configure StarSQL to use a
different StarLicense server, or to use a node-locked license on the computer.
24 StarSQL for Java User’s Guide

Installing StarSQL for Java
• From a Windows computer, select the Edit StarLicense.properties
shortcut from the StarSQL for Java program group.

• From a UNIX, Mac OS X, OS/390, or OS/400 computer, use a text editor
to edit the StarLicense.properties file.

The next section describes the format and valid configuration values.

License Configuration File Format

The StarLicense.properties file contains a global variable and two sections, as shown
below:

DEFAULT_PRODUCTID
[ClientServerN]
[ClientLicense]

You can precede any line with a # sign to include comments in the file or to comment
out (disable) a particular line in the configuration.

Setting the global variable DEFAULT_PRODUCTID in the StarLicense.properties file
limits the licenses that can be checked out to that product license type. The following
table shows the product ID values that you can specify for DEFAULT_PRODUCTID to
control how the license connections can be used.

Table 2. Default Product IDs for License Checkout

The [ClientServerN] section is for specifying a license server, while the [ClientLicense]
section is for specifying that you want to use a node-locked license.

DEFAULT_PRODUCTID Value Description

SQ The default value, SQ, checks out a
StarSQL license for any type of DRDA-
based host.

CA Requires that the connection be to a DB2
for i host.

UX Requires that the connection be to a DB2
for LUW host.

JV Requires the connection be to a Derby
host.
StarSQL for Java User’s Guide 25

Installing StarSQL for Java
The StarLicense.properties file that is included in the distribution for
Windows-based computers is configured with the following entry to use a node-locked
license by default:

[ClientLicense]
Nodelocked=true

The StarLicense.properties file that is included in the distribution for UNIX-
based computers is configured by default to use a StarLicense daemon running on the
local computer for license checkout. The IP address 127.0.0.1 that is specified for the
hostname is a standard loopback network connection address that is commonly used to
access a network service that is running on the same computer.

[ClientServer0]
hostname=127.0.0.1
port=4999

Refer to the appropriate section below, depending on whether you want to configure the
client to use a floating license on a StarLicense server within the same TCP/IP network
or use a node-locked license on the local computer.

Configuring a Client to Use a Floating License

Edit the [ClientServerN] section of the StarLicense.properties file to specify a
StarLicense server to use for licensing StarSQL connections.

The StarLicense.properties file must contain the following section to identify the license
server.

[ClientServerN]
hostname=yourhostname
port=nnnn
primary=true|false

If you have more than one StarLicense server, you can specify multiple [ClientServerN]
headers in the StarLicense.properties file, replacing N with a number that represents that
server definition. The number of the ClientServer definition determines the order in
which the servers are used, regardless of where the header appears in the properties file
(unless there is a duplicate number, in which case the last definition supersedes the
previous definition for that header). The [ClientServerN] header without the optional
number defaults to the equivalent of [ClientServer0].

Each server header section can contain the keywords described in Table 3.
26 StarSQL for Java User’s Guide

Installing StarSQL for Java
Table 3. Keywords for [ClientServerN] Header

Following is an example StarLicense.properties file that defines three StarLicense
servers. The first two servers are defined as primary license servers, with the first server
listening for license requests on port 50001 and the second listing for requests on the
default port of 4999. The third StarLicense server, [ClientServer2], is defined to act as a
secondary license server by specifying False for the primary keyword.

[ClientServer0]
hostname=starlicserv1.organization.com
port=50001

[ClientServer1]
hostname=215.168.44.101

[ClientServer2]
hostname=215.168.64.100
primary=false

The StarLicense Server documentation provides additional information about
configuring and managing StarLicense servers.

Keyword Description

hostname Specify the name of the host, either as an IP address
(xxx.xxx.xxx.xxx) or a DNS name (myhost.mydomain.com). The
default hostname is starlic.

port The number of the port used to connect to the StarLicense server
specified by the hostname keyword. The default port number is 4999.

primary Indicates whether the StarLicense server specified by the hostname
keyword is a primary license server. When a license is requested, it is
requested from primary servers prior to attempting to connect to
secondary servers. You can specify True, which indicates the server
specified by the hostname keyword acts as a primary license server,
or False, which indicates the host is a secondary license server. The
default is True.
StarSQL for Java User’s Guide 27

Installing StarSQL for Java
Configuring a Client to Use a Node-Locked License

An alternative to using a StarLicense server to obtain a license is to configure the client
computer with a node-locked license for using the StarSQL for Java driver. This section
describes how to configure a node-locked license on a Windows workstation. Node-
locked licensing is not currently available for the Mac OS X, OS/390, OS/400, or UNIX
platforms—from those platforms you must connect to a StarLicense server to obtain a
floating license, as described in the previous section.

Online Licensing

To request a node-locked License Key over the Internet you can simply start the
StarLicense Configuration utility and provide the Registration Key that you received
from StarQuest Support for using StarSQL for Java.

1 . Select StarLicense Configuration from the StarSQL for Java program group.

2. Click on the License Online tab.

3. Select whether to use the Host ID or an IP address for the type of license lock.
If you use an IP address it must be a static IP address (not one dynamically
assigned by a DHCP server).

4. Enter the Registration Key that was provided in the download confirmation
email and click Get License.

When the request successfully completes, the StarSQL license appears in the License
Keys list of the Licenses tab. A Registration Key can produce several License Keys,
depending on the products you are registered to use.

Manually Adding a License Key

You also can request a License Key via email from StarQuest Customer Support and
manually add it to the License Key list. Refer to "Contacting StarQuest" on page 17 for
the address and a list of the information you need to supply in your license request.

After you receive the License Key, follow the instructions below to add it.

1 . Select License Configuration from the StarSQL for Java program group.

2. Select the Licenses tab of the License Configuration dialog.

3. Click the Add button to display the Add License dialog.

4. Enter the license key that was provided by StarQuest and click the Add button
of the Add License dialog to save the license key to the Licenses tab.
28 StarSQL for Java User’s Guide

CHAPTER 3 Using StarSQL for Java
This chapter describes how to configure and load the StarSQL for Java driver, and how
to run the sample applications.

Configuring and Loading the StarSQL for Java Driver
StarSQL for Java provides a class which implements the java.sql.Driver interface that is
used by the generic DriverManager class to locate a specific JDBC driver. The
classname for StarSQL for Java is com.starsql.jdbc.SQDriver.

You can configure and load StarSQL for Java using any of the following methods:

• the getPropertyInfo method, which is part of the java.sql.Driver interface

• via a connection URL

• via a data source

Applications can load and configure StarSQL for Java at connection time, passing
parameters as part of the URL, in a java.util.Properties object, or in a data source. The
property information specifies the parameters that StarSQL for Java needs to establish a
connection to a database.

StarSQL for Java Configuration Properties

The property parameter names and values are case sensitive. If a parameter is specified
in both the URL and the Properties object, the value specified in the URL takes
precedence. For example, if an application passes a user ID and password when getting
a connection using a data source, the user ID and password values that are passed
supersede those defined in the data source.

Table 4 shows the property parameters that StarSQL for Java supports, which
parameters are required, and whether a default value is assumed if the parameter is not
specified. Some parameters are dependent on how the host DBMS is configured, such
as for security, or the type of host StarSQL will connect to, such as parameters specific
StarSQL for Java User’s Guide 29

Using StarSQL for Java
to Derby. Each parameter is described in more detail beginning on page 32.

Table 4. Property Information Parameters

 Name Required Default Value Valid Values

accounting

catalogFilter

collection STARSQL

commitProcedureCall True True | False

createTable

databaseName Yes

dateFormat standard
JDBC format
(yyyy-mm-dd)

eur | eurSlash | usa

eur = dd.mm.yyyy
eurSlash = dd/mm/yy
usa = mm/dd/yyyy

decimalDelimiter Must be set
to host for
connection to
Derby host.

period comma | host | period

defaultQualifier

description

diagnosticsLevel 0 0 | 1 | 2

drdaTrace False True | False

dynamicRules Run Run | Bind

fullyMaterializeCLOB True True | False

heldCursors False True | False
30 StarSQL for Java User’s Guide

Using StarSQL for Java
For prior releases of the StarSQL for Java driver, the properties shown in Table 5 were
available. Although the current release of StarSQL for Java still accepts these
properties, they may not be valid in future releases. At your earliest convenience, use
the current properties instead of the deprecated properties.

keepDynamic True True | False

newPassword

password depends on
host DBMS

portNumber 446

productID SQ CA | JV | SQ | UX
CA = IBM i host
JV = Derby host
SQ = any DRDA-based

host
UX = LUW (UDB) host

pwdEncryption False True | False

sendUnicode Must be set
to True for
connection to
Derby host.

True True | False

serverName Yes

ssl SSL | SSLv3 | TLS |
TLSv1

typdefovr 1252,0,0 any supported CCSID
values (see National
Language Support on
page 93)

user depends on
host DBMS

 Name Required Default Value Valid Values
StarSQL for Java User’s Guide 31

Using StarSQL for Java
Table 5. Deprecated URL Parameters

accounting Parameter

Some DRDA host systems allow you to specify an accounting string for charging back
the mainframe resources that particular users consume when connected to the host
through StarSQL. The accounting string is passed in the PRDDTA parameter of the
ACCRDB DRDA command. It is stored as an accounting record on the mainframe.

The string that you specify for the accounting parameter is appended to the
accounting string as a user-defined suffix.

catalogFilter Parameter

You can use the catalogFilter parameter to limit the amount of data retrieved from
catalog calls when passing a “%” or NULL value. The value of this parameter, which
can be a comma delimited set of values, limits the results to the specified catalogs. For
examples, to limit the results of a getTables catalog call to those tables in catalogs Sales
and Marketing, specify the parameter as catalogFilter=SALES,MARKETING.

collection Parameter

The collection parameter specifies the location on the DRDA host of the collection
required by StarSQL to execute Dynamic SQL. The default is STARSQL.

Deprecated Parameter Current Parameter

create.table createTable

dynamic.rules dynamicRules

held.cursors heldCursors

host.name serverName

new.password newPassword

package.collectionID collection

pwd.encryption pwdEncryption

rdb.name databaseName
32 StarSQL for Java User’s Guide

Using StarSQL for Java
commitProcedureCall Parameter

The commitProcedureCall parameter specifies whether to send a Commit on the
execute chain when invoking a stored procedure from an application using the JDBC
auto-commit mode. The default value is True. Setting commitProcedureCall to False
allows compatibility with versions of StarSQL for Java that were released prior to 2004
when invoking a stored procedure in autoCommitMode did not send a Commit.

createTable Parameter

Set the createTable string to contain a directive that you want to append to SQL create
table statements. The directive indicates where you want the table to be created.

For example, if createTable=in database DSNTEST and an application passes
the following statement:

create table test (num integer)

the StarSQL driver passes the statement to DB2 as:

create table test (num integer) in database DSNTEST

Valid values for the createTable keyword depend on the host where the data source is
located, as shown in Table 6.

Table 6. Supported CreateTable Directives

DRDA Host Valid Table Creation Directives Comment

DB2 for z/OS

or
DB2 for VSE
& VM

IN DATABASE DATABASE_NAME

IN DATABASE_NAME.TABLESPACE

DB2 for i IN NODE GROUP_NAME A node group name is a
qualified or unqualified name
that designates a nodegroup,
which is a group of IBM i
systems across which a table is
distributed.

DB2 for LUW IN TABLESPACE_NAME A tablespace name is a long
qualifier that identifies a distinct
table space that is described in
the DB2 catalog.
StarSQL for Java User’s Guide 33

Using StarSQL for Java
databaseName Parameter

For the databaseName parameter, specify the name of the database to which you want to
connect. This parameter is known as the RDB name on DB2 for i, the DB2 Location
Name on DB2 z/OS, and the Database Name on DB2 LUW.

dateFormat Parameter

The dateFormat parameter allows an application to use the specified date format when
passing dates as SQL strings and setting and retrieving dates using the setString() and
getString() methods. If the dateFormat parameter is not explicitly set, the StarSQL for
Java driver assumes dates will be in the standard IBM-ISO date format, which is yyyy-
mm-dd.

Note
The JDBC API provides mechanisms for localizing an application for a specific
geographical, political, or cultural region. There is no need to set the dateFormat
parameter of the StarSQL for Java driver if you use the standard JDBC methods for

localizing an application.

The values that you can specify for the dateFormat parameter are eur, eurSlash, and
usa. The eur and usa date formats can be specified for any of the supported hosts
(see page 13). Specifying the eurSlash format affects only the data returned with
getString()—SQL strings and setString() values must use the IBM-ISO date format.

To use the eur, eurSlash, or usa date formats you must bind specific packages on
the host. The following table shows the format for each of the dateFormat values, and
which package must be bound to use that format. The SWxxx portion of the package
name varies depending on the type of host and the configuration properties, as described
in "Binding Packages" on page 85. For example, if the default package used to connect
to a z/OS host is SWRC5000 (Read Committed isolation level with heldCursors and
dynamicRules set to Yes) and you want to use the usa date format, you must bind the
package SWRC5400.

dateFormat value date format Required Package

eur dd.mm.yyyy SWxxx800

eurSlash dd/mm/yy SWxxxC00

usa mm/dd/yyyy SWxxx400
34 StarSQL for Java User’s Guide

Using StarSQL for Java
These packages are unique to StarSQL for Java, so you must use the StarSQL for Java
driver to bind them. To bind the package, connect to the host (using an ID that has
authority to bind packages) from a JDBC application that uses the StarSQL for Java
driver configured with the desired dateFormat value. Then execute a simple SELECT
statement from the JDBC application. After the package is bound you can then grant
EXECUTE privileges on the new package to other users as needed.

decimalDelimiter Parameter

The decimalDelimiter parameter allows an application to pass decimal values using a
comma instead of a period for the decimal notation in numeric values that are passed in
SQL strings and with the setString() and getString() methods. The decimalDelimiter
parameter must be set to host to connect to a Derby host. For a DB2 host, if the
decimalDelimiter parameter is not explicitly set to comma, StarSQL for Java uses a
period as the decimal delimiter. The decimalDelimiter parameter setting affects the SQL
data types DECIMAL, DOUBLE PRECISION, FLOAT, NUMERIC, and REAL
PRECISION.

The host server imposes syntax restrictions when using decimal commas in SQL strings.
For example, an additional space character is required to distinguish the decimal value,
as compared for the following SQL statements.

SQL statement with period notation for decimal values:

insert into mytable values (1234,6.78)

SQL statement with comma notation for decimal values:

insert into mytable values (1234, 6,78)

defaultQualifier Parameter

For the defaultQualifier parameter you can specify a value that you want to use to
qualify all unqualified SQL statements. On DB2 for i, this qualifier refers to IBM i
library. On other DRDA hosts it refers to an Owner or Authorization Identifier.

For example, if you set defaultQualifier=MYQUAL, the SQL statement "SELECT *
FROM MYTABLE" would be converted to "SELECT * FROM
MYQUAL.MYTABLE".

description Parameter

The optional description parameter is applicable only when you are connecting to the
host using a data source. It provides a brief description of the data source that can be
displayed by datasource tools.
StarSQL for Java User’s Guide 35

Using StarSQL for Java
diagnosticsLevel Parameter

The diagnosticsLevel parameter controls whether the driver requests additional DRDA
level diagnostics information. The default value is 0, which does not request the
additional diagnostics information. Set this parameter only under the advice of a
StarQuest Technical Support engineer should additional diagnostics information be
needed to troubleshoot a problem.

drdaTrace Parameter

DRDA tracing is turned off by default. To trace DRDA operations, load the StarSQL for
Java driver with the drdaTrace parameter enabled in the URL or data source
definition. The following code excerpt shows establishing a connection to a host with
DRDA tracing turned on.

// Find the class...
 Class.forName(“com.starsql.jdbc.SQDriver”);
// Open a connection...
 Connection myConnection =

DriverManager.getConnection(
 "jdbc:StarSQL_JDBC://starhost

/SAMPLE;drdaTrace=True",
 "staruser",
 "starpass");

The DRDA trace is saved to the application’s working directory with an .sqd file
extension; be sure the userID running the application has permission to write in that
directory. If it is difficult to grant that permission, or if the application is running as a
Windows service, we recommend using the DRDA trace facilities of StarPipes instead.

The .sqd trace files can be read with the DRDA Trace Viewer application that is
supplied with the StarSQL for Windows ODBC driver software.

dynamicRules Parameter

The dynamicRules parameter applies only to applications that use Dynamic SQL on a
data source on DB2 for z/OS. Set this option to RUN or BIND as desired.

On DB2 for z/OS, the permissions required to run applications that use Dynamic SQL
depend on the value of the dynamicRules parameter.

If dynamicRules=RUN, which is the default value, the System Administrator needs to
grant the user explicit permissions to read and write the columns and tables accessed by
the application.
36 StarSQL for Java User’s Guide

Using StarSQL for Java
If dynamicRules=BIND, the StarSQL user executes with the permissions of the owner
of the dynamic SQL package. If dynamicRules is set to BIND, the following SQL
statements cannot be executed, regardless of the actual permissions of the package
owner:

• SET CURRENT SQLID

• GRANT

• REVOKE

• ALTER

• CREATE

• DROP

• Any SQL statement that cannot be prepared as dynamic SQL

fullyMaterializeCLOB Parameter

When data that is sent between the host and client computers contains Character Large
Objects (CLOBs) with multi-byte characters, the DRDA host returns the length of the
CLOB in bytes rather than number of characters. Setting the fullyMaterializeCLOB
parameter to True, which is the default value if it is not explicitly set, causes the
StarSQL for Java driver to retrieve the complete CLOB value and convert it to the local
CCSID prior to determining the length.

With the fullyMaterializeCLOB parameter set to True, retrieving a very large CLOB
may exhaust the Java Virtual Machine (JVM) memory. In this case, set
fullyMaterializeCLOB to False. If fullyMaterializeCLOB is set to False and the CLOB
contains multi-byte characters, the Clob.getSubString() method may not work as
expected. The work around is to have the application call the Clob.getCharacterStream()
method rather than the getSubString() method to retrieve the CLOB value.

heldCursors Parameter

Normally a cursor is closed when its transaction commits. A transaction can involve one
or more SQL commands that are committed as a unit—either the entire transaction or
none of it is committed to the database. If the heldCursors parameter is enabled
(heldCursors=True), the cursor remains open after the commit. This enables an
application to fetch rows from a result set, commit the transaction, and then continue
fetching additional rows on the same result set.
StarSQL for Java User’s Guide 37

Using StarSQL for Java
keepDynamic Parameter

The keepDynamic parameter enables (keepDynamic=True) or disables
(keepDynamic=False) optimization for prepared statements by tuning the
KeepDynamic bind option (DB2 for OS/390 v5 and above and DB2 UDB v6 for
Windows and UNIX).

newPassword Parameter

You can pass a value for the newPassword parameter to host systems that support
resetting the password. You must specify valid entries for the user and password
properties for the newPassword parameter to be valid.

password Parameter

The password parameter must contain a valid password for the user account that is
accessing the host database.

portNumber Parameter

For the portNumber parameter, specify the port number that the DB2 server is listening
on for DRDA communications. The default DRDA port is 446, which is the default for
DB2 for z/OS and DB2 for i. Note that the default port for DB2 for LUW is 50000, so
you will need to set the port explicitly. The default port that host systems use for the
SSL protocol is 448, so you may need to set the port explicitly if you want to use SSL.
The following example shows a connection URL that enables SSL and sets the port to
448.

set URL=jdbc:StarSQL_JDBC://servername:448/databasename;ssl=TLS

productID Parameter

The productID parameter causes the StarSQL for Java driver to check out a license
using a specific type of StarQuest product license. Specifying the productID in the URL
or data source allows you to use different licenses for different connections from the
same system or application. The default value of SQ checks out a license for any
DRDA-based host. Setting the productID to one of the other valid values requires that
the connection use a license for the specific type of host—CA requires a license for
connecting to a DB2 for i host, JV requires a license for connecting to a Derby host, and
UX requires that the connection be to a DB2 LUW host.

If no productID is specified for the license type, the default SQ is used unless a different
value is specified for the DEFAULT_PRODUCTID property in the
StarLicense.properties file. If an organization has only one type of license, such as
for connections to a DB2 for i host, setting the DEFAULT_PRODUCTID property
38 StarSQL for Java User’s Guide

Using StarSQL for Java
avoids the need to specify the productID parameter in the URL or data source. See
"License Configuration File Format" on page 25 for information about setting the
DEFAULT_PRODUCTID property.

pwdEncryption Parameter

Some host databases support encrypting the login user ID and/or password for increased
security. Refer to "Host Database Management Systems" on page 13 for details about
which versions of the host database systems support DRDA password encryption.

By default, this release of the StarSQL for Java driver sends the user ID and password in
clear text to avoid problems connecting to hosts that do not support encryption. To
enable password encryption for StarSQL for Java, set pwdEncryption=True when you
load the driver.

Table 7 shows examples of how to enable encryption depending on which method you
use to load the StarSQL for Java driver. Since the default value is False, password
encryption is disabled if you do not specify the pwdEncryption parameter.

Table 7. Configuring Password Encryption

sendUnicode Parameter

Setting the sendUnicode parameter to True causes StarSQL for Java to send Multi-byte
Character Set (MBCS) data to the host using CCSID 1208, and Double-byte Character
Set (DBCS) and GRAPHIC data using CCSID 1200. Set the sendUnicode parameter to
True only if the host is capable of accepting Unicode data. The sendUnicode parameter
must be set to True to connect to a Derby host.

Connection
Method

To Enable Encryption

using JDBC driver
interface

connectionProperties(“pwdEncryption”, “True”);

using a connection
URL

set URL=jdbc:StarSQL_JDBC://servername:446/
databasename;pwdEncryption=True

using a data
source

ds->setPwdEncryption(new Boolean(True))
StarSQL for Java User’s Guide 39

Using StarSQL for Java
The default value for the sendUnicode parameter depends on the default locale that is
set for the JVM or JRE. If the locale is set to a Group 2 language (Chinese, Japanese, or
Korean), the default for the sendUnicode parameter is True. If the locale is set to any
other language, the default for the sendUnicode parameter is False.

serverName Parameter

For the serverName parameter, specify the host name or IP address of the host as it is
defined in the network.

ssl Parameter

The ssl parameter controls whether the StarSQL for Java driver uses the Secure Sockets
Layer (SSL) protocol for encrypted communications between the host and client
computers. By default the StarSQL for Java driver uses standard Sockets protocol. To
use SSL protocol, you must:

• Set the ssl parameter for the StarSQL for Java driver to a valid string that
indicates which named secure socket protocol to use.

• Configure the host system to use the SSL protocol, as described in
"Configuring Support for the SSL Protocol" on page 76.

You also may need to explicitly set the port number, as some hosts use a default port of
448 for SSL rather than the default DRDA port of 446. See "portNumber Parameter" on
page 39 for details.

typdefovr Parameter

Use the typdefovr keyword to explicitly set the single-byte character set (SBCS) CCSID
that StarSQL uses to send character data to the DRDA host. When typdefovr is set,
StarSQL sends the data using the CCSID specified in the typdefovr with each DRDA
request.

The typdefovr keyword value can be any SBCS CCSID that StarSQL supports. (For the
complete list of supported CCSIDs, refer to the Oracle Java documentation).

If a SBCS CCSID is specified for typdefovr, StarSQL sends all SQL statements and
parameters as single-byte character strings defined by that CCSID. To support double-
byte (DBCS) and mixed-byte (MBCS) character sets, set the sendUnicode property of
the StarSQL driver to True (see "sendUnicode Parameter" on page 40) rather than
specifying the typdefovr parameter.

user Parameter

The user parameter specifies the user ID to use for logging on to the host database.
40 StarSQL for Java User’s Guide

Using StarSQL for Java
Using the JDBC Driver Interface

Applications can call the getPropertyInfo method provided as part of the StarSQL
JDBC driver interface to determine which parameters are supported. StarSQL for Java
returns information for the parameters shown in Table 4 on page 30.

The following code excerpt shows establishing a connection to a host named starhost,
with an database name of SAMPLE, as user staruser with a password of starpass. Since
no port value is specified, the default port value of 446 is used for the DRDA
connection.

// Find the class...
 Class.forName(“com.starsql.jdbc.SQDriver”);
// Open a connection...
 Connection myConnection =

DriverManager.getConnection(
 "jdbc:StarSQL_JDBC://starhost/SAMPLE",

 "staruser", "starpass");

Using the Connection URL

Applications can load and configure the StarSQL for Java driver by passing the property
parameters in a URL. The supported parameters are shown in Table 4 on page 30, and
the syntax of the URL is as follows:

jdbc:StarSQL_JDBC[://servername[:port]/
databasename][;attribute-name=attribute-value]

The servername (in the form of a DNS name or an IP address) and databasename
parameters are required, but a default port of 446 is used if you do not specify a port.

You can specify an unlimited number of attribute-name=attribute-value pairs. Separate
each name=value pair with a semi-colon (;). For example, the following connection
URL establishes a connection to a remote database named DB2V7B, using port 448
with a username and password of staruser and starpass.

jdbc:StarSQL_JDBC://db2v7b.mydomain.com:448/
DB2V7B;user=staruser;password=starpass

Note
To specify multiple attribute-name pairs on a UNIX computer, you must enclose the
URL in quotation marks (such as, URL="jdbc:StarSQL_JDBC://amelia:446/
SAMPLE;pwdEncryption=True; defaultQualifier=Sales,Marketing") because UNIX

interprets the semicolon (;) between the parameters as the next command to invoke.

If there are duplicate name=value pairs, the final occurrence of the pair determines the
value passed to the Properties object.
StarSQL for Java User’s Guide 41

Using StarSQL for Java
Using Data Sources

Many commercial applications include support for data sources. Data sources provide
the configuration parameters the StarSQL for Java driver needs to connect to the host
database. To set up the StarSQL for Java driver as a JDBC provider and define a data
source, you need to supply the following driver-specific information.

Table 8. JDBC Provider Information

After you configure the StarSQL for Java driver to be a JDBC provider, you create a
data source that provides the specific connection information.

StarSQL for Java provides classes that implement the three JDBC data source types for
applications that need data source connectivity rather than URL-based connections.
JDBC defines three data source types, for which the StarSQL for Java driver provides
classes for using, as shown in Table 9. Use the java.sql.DataSource type for standard
JDBC connections. Use the java.sql.ConnectionPoolDataSource for data source
connectivity where connections are pooled, which allows for improved performance.
Use the javax.sql.XADataSource for data source connectivity in a transaction-oriented
environment. XA data sources also are pooled connections.

Table 9. StarSQL for Java Classes for Using Data Sources

The Initial Context for a data source provides access to naming directory services using
the JNDI. The StarSQL for Java driver supports any JNDI Service Provider that
conforms to the JNDI specification.

Configuration Property Value for StarSQL for Java Driver

Classpath StarSQL_JDBC.jar

Implementation Classname com.starsql.jdbc.SQDriver

Data Source Type StarSQL for Java Implementation Class

java.sql.DataSource com.starsql.datasource.SQDataSource

java.sql.ConnectionPoolDataSource com.starsql.datasource.SQConnectionPoolDataSource

javax.sql.XADataSource com.starsql.datasource.SQXADataSource
42 StarSQL for Java User’s Guide

Using StarSQL for Java
There are many service providers that are publicly available, such as COS Naming for
access to CORBA naming services, the Directory Services Markup Language (DSML),
Novell for access to the NetWare Directory Services (NDS), Windows for access to the
Windows Registry, and XNam for reading naming information from XML files. Refer
to the Oracle Java website for a a list of publicly available service providers. Following
is information about specifying two commonly used service provider interfaces, which
use the file system context factory and an LDAP server.

• To use a file data source, set the Initial Context to the file system context
factory, com.sun.jndi.fscontext.RefFSContextFactory, and specify the
Provider URL in the form of “file:/directory,” which is where the
.bindings file that keeps track of the JNDI names is located.

• To use a data source on an LDAP server, set the Initial Context to
com.sun.jndi.ldap.LdapCtxFactory and specify the Provider URL in
the form of “ldap://ldap.mydomain.com:port”.

Regardless of the host platform and service provider that you use, you will need the host
information described in Table 10 to specify the database you want to access using
StarSQL for Java. You may need to obtain this information from the DB2 administrator.

Table 10. Host Information Required for Data Source Configuration

Data Source Information Item Information Needed

SQL Package Collection ID

(see "collection Parameter" on
page 33)

location of SQL packages required by StarSQL
for Java

Database Server Name (see
"databaseName Parameter" on
page 34)

relational database name or location name

User ID and Password (see "user
Parameter" on page 41 and
"password Parameter" on page
39)

user id and password for connecting to the host

TCP/IP connection information
(see "serverName Parameter" on
page 40 and "portNumber
Parameter" on page 39)

host name and port
StarSQL for Java User’s Guide 43

Using StarSQL for Java
StarSQL for Java includes a sample application, CreateDS, that you can use to create a
simple data source definition. Refer to the section, "Running the Sample Applications"
on page 48 for details about using the CreateDS sample application.

Displaying StarSQL Driver Information
StarSQL for Java includes a program named ShowVersion that loads the driver, from the
default CLASSPATH or one specified in the script or batch file, and displays
information about the driver.

• From a Mac OS X computer, use the Finder to open Applications/
starsql_java/samples, double-click samples.command, and select
ShowVersion.

• From other UNIX computers, run the runapp.sh ShowVersion script or
the samples.sh script.

• From a Windows computer, select Show Version from the StarSQL for
Java–>Samples program group.

The ShowVersion program displays information about the driver, such as shown below:

Testing a StarSQL/DRDA Connection
After you install and configure StarSQL for Java, perform the procedures in this section
to test that the client can connect to the DRDA host using StarSQL. To establish
connectivity to a database, the host must be configured to accept connections from
StarSQL. Refer to "Preparing Hosts for StarSQL Access" on page 69 if your host is not
already configured for StarSQL connections.

You can use the SimpConn program included with StarSQL for Java to verify that a
client can connect to a specific URL using a valid host account. The SimpConn program
checks out a license, either from the local workstation or from a license server, to
connect to the host. You must specify a username and password of an account that is
valid on the host and has permission to access the database. (See "Preparation Required
for All Hosts" on page 69 for more information about user accounts and permissions.)
44 StarSQL for Java User’s Guide

Using StarSQL for Java
The SimpConn program also accepts a parameter, N=n, that specifies the number of
times to run the connection test. Since the SimpConn program does not release
connections until it ends, you can run multiple iterations of the program to test the
number of simultaneous connections the license allows. The SimpConn program
initially is configured to run once (N=1).

1 . Edit the simpconn.command (for Mac OS X), simpconn.sh (for other versions
of UNIX) or simpconn.bat file (for Windows) to specify a valid host,
database, and user account. You may need to change the file permissions from
Read Only to Write to save the changes.

2. Run the simpconn.sh script from UNIX (double-click simpconn.command
from Mac OS X), or the simpconn.bat file for Windows.

The SimpConn program runs in a command window and, upon successful connection to
the host, returns information about the connection and the database and driver versions.
The following sample output shows that the StarSQL for Java driver connected to a
DB2 for i database on a host named MAXIMUS using the SimpConn program:

Figure 3. Using SimpConn to Connect to a Host
StarSQL for Java User’s Guide 45

Using StarSQL for Java
The StarSQL for Java Sample Applications
StarSQL for Java includes several sample applications that use the StarSQL for Java
driver to show typical connection, statement execution, and handling of result sets.

Note
The sample applications are not designed to support the full JDBC functionality nor are
they intended to be used as test tools or productivity applications. They are sample
programs intended only to help you test that the StarSQL for Java driver is installed and

working correctly.

• CreateDS is a program that allows you to create a simple file data source
definition. You can connect to a file data source that you create with the
CreateDS application from the CatalogApp, LobTestApp, and QueryApp
sample applications.

• CatalogApp is a database browser that displays the metadata (schema,
table name, column name, and the column data type) for a database and
the contents for that table.

• LobTestApp is a program that illustrates how the StarSQL for Java
driver supports BLOB and CLOB data types.

• QueryApp provides a graphical interface for querying and displaying
data from a database.

As described earlier in this chapter, StarSQL for Java also includes the following two
sample applications to provide information about the StarSQL for Java driver and test
whether a client can connect to a host.

• ShowVersion displays information about the version of StarSQL for
Java that is installed. See "Displaying StarSQL Driver Information" on
page 45 for details about running the ShowVersion sample application.

• SimpConn is a program that tests whether a client can connect to a
specific host database. See "Testing a StarSQL/DRDA Connection" on
page 45 for details about running the SimpConn sample application.

The source code for all of the sample applications is provided with the StarSQL for Java
software. Refer to "Building the Sample Applications" on page 63 for guidance on how
to build the sample applications.
46 StarSQL for Java User’s Guide

Using StarSQL for Java
Running the Sample Applications

The Samples directory contains a batch file (RunApp.bat) for running the sample
applications under Windows, and a shell script (runapp.sh) for running the sample
applications under UNIX. You need to modify the batch or script file if you installed
StarSQL for Java in a location other than the default installation directory and have not
set the STARSQL_JAVA environment variable. The script tests whether the
STARSQL_JAVA environment variable has been set and, if not, uses the default
installation directory. Refer to "Installing StarSQL for Java" on page 19 for information
about the default installation location for each platform and how to set the
STARSQL_JAVA environment variable.

To use the RunApp batch or script file, specify the case-sensitive sample application
classname (CatalogApp, CreateDS, LobTestApp, QueryApp, or
TransactionLogManager) when you enter the command. For example, the following
command runs the CatalogApp sample application:

runapp CatalogApp

Note
When you run these sample applications on UNIX, text may appear truncated at the
bottom of text fields if the font specified in the font properties for the graphical interface
is not available. This affects only the appearance, not the functionality of the

application.

The UNIX shell scripts samples.command (for Mac OS X) and samples.sh present a
menu of the available sample applications and utilities.

On an OS/400 computer you can run the sample applications under QSHELL, PASE, or
xterm under PASE; however, the appearance of the samples menu has been optimized
for using xterm under PASE.

Running the CreateDS Sample Application

Two versions of the CreateDS application are provided—one that has a graphical user
interface (GUI) and one that can be run from a command line interface (CLI). The
CreateDS sample application creates a file data source, which uses the file system
context factory. (See "Using Data Sources" on page 43 for more information about
context factories.)
StarSQL for Java User’s Guide 47

Using StarSQL for Java
Running the CreateDS GUI Version

To create a file data source using the GUI version of the CreateDS sample application,
follow the steps below. When you create a data source using the CreateDS application,
it creates a data source file named .bindings in the \java directory on Windows or the
/tmp directory on UNIX.

1 . From a Mac OS X computer, use the Finder to open Applications/
starsql_java/samples, double-click samples.command, and select CreateDS.

From other UNIX computers, run the runapp.sh CreateDS script or the
samples.sh script.

From a Windows computer, select CreateDS from the StarSQL for
Java–>Samples program group.

The CreateDS application window appears so you can enter appropriate values for the
data source.

Figure 4. GUI Version of the CreateDS Sample Application
48 StarSQL for Java User’s Guide

Using StarSQL for Java
Table 11 describes the properties you can specify for the data source.

Table 11. Data Source Properties

2. Enter appropriate values for the data source and click Create DataSource.

Data Source
Information Item

Description

JNDI Name A name that is used to bind the data source in the Java
Naming and Directory Interface.

Host The DNS name or IP address of the host to which you
want to connect.

Port The port you want to use for DRDA communications.

Database Server
Name

The name of the relational database to which you want to
connect.

User ID and Password The user id and password required to access the host
computer.

Provider URL The path to the .bindings that stores the JNDI names. This
typically is C:/java for Windows-based computers or /tmp
for UNIX-based computers.

Enable Password
Encryption

An option that determines whether the data source allows
encrypted passwords. If you turn on password encryption,
be sure the host supports it ("Host Database Management
Systems" on page 13 describes which database systems
support password encryption).

Use SSL Enable the SSL option if you want the StarSQL for Java
driver to use Secure Sockets Layer protocol when
connecting to the host using this data source. The host
also must be configured to use SSL, as described in
"Configuring Support for the SSL Protocol" on page 76.
StarSQL for Java User’s Guide 49

Using StarSQL for Java
The CreateDS application creates a file data source, showing status and error messages
in the text field at the bottom of the CreateDS window. For example, the following
illustration shows that a data source named Test Data Source 05 that connects to the
SAMPLE database was successfully created.

Figure 5. Successful Creation of File Data Source

Running the CreateDS CLI Version

The CreateDS.cli directory contains files for running the command line interface
(CLI) of the CreateDS sample application. When you run the CLI version of CreateDS,
a data source file named .bindings is created in the \java directory on Windows or the
/tmp directory on UNIX.

Note
The target directory for the data source file (\java on Windows or the /tmp directory on
UNIX) must already exist before you run the command version of the CreateDS

application.
50 StarSQL for Java User’s Guide

Using StarSQL for Java
To run the CLI version of CreateDS, follow the steps below.

1 . Edit the createds.command script file (for Mac OS X), the createds.sh script
file (for other versions of UNIX) or the CreateDS.bat file (for Windows) to
specify the paths to your installed JDK and StarSQL for Java software and to
provide the appropriate name for the data source. See "Data Source Properties"
on page 50 for a description of the values you can specify.

2. From a UNIX computer, run the createds.sh (createds.command for Mac
OS X) script.

From a Windows computer, run the CreateDS.bat batch file.

Using the values specified in the script or batch file, the CreateDS application creates
the data source file in the target directory.

Specifying Connection Information

The sample CatalogApp, LOBTestApp, and QueryApp applications display two tabs for
establishing a connection to a host database. The Connect Info tab prompts for the
information needed to connect to the database. Enter your userID, password, database
name, server name, and port id into the input fields and click the Connect button to
establish a connection to the host database. In the URL Properties you can specify any
of the configuration properties shown in Table 4 on page 30 for establishing the
connection. For example, entering portNumber=448;ssl=TLS for the URL
Properties would connect using the SSL protocol on port number 448.

Figure 6. Using the Connect Info Tab
StarSQL for Java User’s Guide 51

Using StarSQL for Java
The Datasource Info tab allows you to specify a data source to use for connecting to the
database.

Figure 7. Using the Datasource Info Tab

If the data source specifies the user ID and password, leave these fields blank in the
Datasource Info tab. (If the user ID and password are specified in the data source, the
connection is established using that information.)

If you are using a file data source, such as a data source created with the CreateDS
application, leave the Initial Context Factory set to the file system context,
com.sun.jndi.fscontext.RefFSContextFactory. For the Provider URL,
specify the path to the .bindings file, such as file:c:/java. For the JNDI Name, enter
the name of the data source.

Running the CatalogApp Sample Application

The sample CatalogApp application uses the StarSQL for Java driver to display
metadata (schema, table name, column name, and the column data type) and table
results for a database. Follow the steps below to run the CatalogApp sample application.

1 . From a Mac OS X computer, use the Finder to open Applications/
starsql_java/samples, double-click samples.command, and select
CatalogApp.

From other UNIX computers, run the runapp.sh CatalogApp script or the
samples.sh script.

From a Windows computer, select CatalogApp from the StarSQL for
Java–>Samples program group.

2. Establish a connection to the host database, using either the Connect Info or
Datasource Info tabs. (See "Specifying Connection Information" on page 52
for more information.)

Once the connection is established, the schema for that database appears in the pane
labeled Schema. The text box at the bottom of the window provides status and error
messages.
52 StarSQL for Java User’s Guide

Using StarSQL for Java
3. To display the table names for a schema, click a schema name. All the tables
for that schema appear in the pane labeled Table.

4. Click on a table name to display the column names for that table in the pane
labeled Columns.

5. Click on a column name to display the SQL data types for the column in the
pane labeled ColumnInfo.

6. To display the result set for a table, select the table name in the pane labeled
Table and click the Query button. The result set appears in the bottom pane, as
illustrated for the DOCUMENT table in Figure 8.
StarSQL for Java User’s Guide 53

Using StarSQL for Java
Figure 8. Table Query Results Using CatalogApp

7. When you are finished using the CatalogApp application, click the Disconnect
button to disconnect from the host database and then click the Close button to
close the application windows.

Running the LobTestApp Sample Application

The LobTestApp application demonstrates how StarSQL for Java works with LOB
(large object) data types. It allows you to create tables that contain BLOB (binary large
objects) or CLOB (character large objects) data types, and then retrieve data from them.

To use the LobTestApp program, the database you are connecting to must support LOBs
(see "Host Database Management Systems" on page 13 for which versions support
LOBs).
54 StarSQL for Java User’s Guide

Using StarSQL for Java
Note
The LobTestApp sample application was developed and tested with LOBs in a DB2 for
z/OS database. Due to differences in how tablespaces are created on different hosts that
allow LOB data, the LobTestApp may require modification to successfully work with

LOB data on other host systems.

Follow the steps below to run the LobTestApp program.

1 . From a Mac OS X computer, use the Finder to open Applications/
starsql_java/samples, double-click samples.command, and select
LobTestApp.

From other UNIX computers, run the runapp.sh LobTest script or the
samples.sh script.

From a Windows computer, select LobTestApp from the StarSQL for
Java–>Samples program group.
StarSQL for Java User’s Guide 55

Using StarSQL for Java
Figure 9. LobTestApp Sample Application

2. Establish a connection to the host database, using either the Connect Info or
Datasource Info tabs. (See "Specifying Connection Information" on page 52
for more information.)

3. Select which Create test you want to execute from the drop-down menu next to
Select Test. You must create tables, either by LOB or by stream, before you can
execute the Get tests.
56 StarSQL for Java User’s Guide

Using StarSQL for Java
4. Click on BLOB and select a file for which you want to create a table. With
BLOB data types, the file can be any format (such as .pdf, .jpg, and .doc).

5. Click on CLOB and select a file for which you want to create a table. For
CLOB data types, the file can contain only ASCII text or control characters.

6. For the Table Name Prefix, enter a few characters to prefix the table name to
ensure that the tables are given unique names. Make a note of the prefix, as you
need to enter the same prefix to get data from the tables.

7. Enable the Create Unicode Table option if you want to create the table using
the Unicode character set and the host is capable of accepting Unicode data.
This option typically is used when creating tables that contain DBCS and
MBCS data.

8. Click the Execute button to create the tables.

As the test executes, the results are displayed in the bottom pane of the LOBTest
window, as shown in Figure 10.

Figure 10. Using LOBTest to Create Tables
StarSQL for Java User’s Guide 57

Using StarSQL for Java
After you create the tables you can use LOBTest to get BLOB or CLOB data from them.

1 . If you disconnected from the host, reconnect as described in "Specifying
Connection Information" on page 52.

2. Select which Get test you want to execute from the drop-down menu next to
Select Test.

3. Select a file with BLOB or CLOB data, as appropriate for whether you selected
a Get BLOB or Get CLOB test.

4. For the Table Name Prefix, enter the same characters that you used to create
the tables.

5. Click the Execute button to get the selected data.

When the Get test completes successfully, it writes a file with the data to the samples
subdirectory where StarSQL for Java is installed. The output file should match the
original file that was used to create the tables. The filename that you specified for the
BLOB or CLOB data is prefixed with Gotn- for the output file. You can compare the
contents of the original file and the output file to ensure that LOB data is being created
and retrieved properly.

When you are finished using the LOBTest sample application you may want to drop the
tables that you created for the test.

6. From the Select Test drop-down menu, select Drop Tables and click Execute.

7. Click the Disconnect button to disconnect from the host database and then
click the Close button to close the application windows.
58 StarSQL for Java User’s Guide

Using StarSQL for Java
Running the QueryApp Sample Application

QueryApp is a Java-based graphical program that retrieves the result set for a table in a
database. Follow the steps below to run the QueryApp sample application.

1 . From a Mac OS X computer, use the Finder to open Applications/
starsql_java/samples, double-click samples.command, and select
QueryApp.

From other UNIX computers, run the runapp.sh QueryApp script or the
samples.sh script.

From a Windows computer, select QueryApp from the StarSQL for
Java–>Samples program group.

2. Establish a connection to the host database, using either the Connect Info or
Datasource Info tabs. (See "Specifying Connection Information" on page 52
for more information.)

Figure 11. QueryApp Sample Application
StarSQL for Java User’s Guide 59

Using StarSQL for Java
3. On the Catalog Query Info tab you can select a Get operation from the drop-
down menu and click Execute to execute the operation.

4. On the Query Info tab you can type a valid SELECT statement in the text field
and click the Execute button to execute the statement.

The Execute button changes to Cancel while the operation is being performed, and then
the QueryApp application displays the result set in the bottom panel, as illustrated in
Figure 12. If the query returns multiple result sets, click the Next button to display the
next result set. Status and error messages appear in the text field at the bottom of the
window.
60 StarSQL for Java User’s Guide

Using StarSQL for Java
Figure 12. Using QueryApp to Issue Catalog Queries

5. When you are finished using the QueryApp sample application, click
Disconnect to disconnect from the host, and click the Close button to exit the
application.
StarSQL for Java User’s Guide 61

Using StarSQL for Java
Building the Sample Applications

All the sample applications that are provided with StarSQL for Java are available in
\Program Files\StarQuest\StarSQL_Java\Samples for Windows, and
$STARSQL_JAVA/samples for UNIX. The Samples directory contains a java_src
directory which provides the source code for the sample applications.

The command line sample applications, CreateDS.cli and simpconn have their own
build scripts. You can build the GUI sample applications (CatalogApp, CreateDS,
LobTest, and QueryApp) using either of the following methods:

• run the batch file, build.bat, on a Windows computer, or the script file
build.sh from a UNIX computer. These files use the javac and jar tools
of the JDK to build the sample applications.

• import the sample application source files into an Integrated
Development Environment (IDE) tool, such as the open source Eclipse
SDK (available at http://www.eclipse.org)

Regardless of how you build the sample applications, keep the following guidelines in
mind:

• The sample applications use shared code, which is distributed in the
apps\com\StarSQL\apps directory where StarSQL for Java is installed.
Set up a project for the shared code if you use an IDE to build the sample
applications.

• The CreateDS project relies upon the StarSQL_JDBC.jar file to get the
datasource information that is specific to StarSQL. The other sample
applications do not need access to the StarSQL_JDBC.jar until they are
run.

• Output the .jar file for each sample application to the same directory so
they can share the Connection.properties and Datasource.properties that
are created when a connection is successful.

Building the Sample Applications Using a Batch
or Script File

From a Windows computer you can build the sample applications by running the build
batch file, and from a UNIX computer you can run the build.sh script. Be sure the
PATH variable specifies the appropriate path to the Java SDK \bin subdirectory so the
batch file can run the Java executable programs and compiler (java, jar, and javac).
62 StarSQL for Java User’s Guide

http://www.eclipse.org

Using StarSQL for Java
Building the Sample Applications Using an IDE

The procedures in this section describe how to build the sample applications using the
Eclipse Platform v3.0 on a computer running Windows XP Pro. The details may differ if
you are using a different version of Eclipse, a different operating system, or a different
IDE, but the general procedures should be applicable.

1 . Copy the java_src directory from the StarSQL for Java installation directory
to a working directory (the following procedures name the working directory
samples).

On a Windows computer:

C> mkdir C:\samples
C> xcopy %STARSQL_JAVA%\samples\java_src*

C:\samples /S

On a UNIX computer:

$ mkdir $HOME/samples
$ cp -R $STARSQL_JAVA/samples/java_src/*

$HOME/samples

2. Start Eclipse and select File–>Switch Workspace to create a new workspace.

3. Set up a project for the shared code, which is distributed in the apps
subdirectory (such as C:\samples\apps if you copied the java_src files to a
samples directory on drive C:).

a. Select File–>New–>Project.

b. In the New Project wizard, select Java Project and click Next.

c. Enter a name for the project, such as Shared Code. For the Location, select
the Create Project at External Location option and browse to the apps
subdirectory of the working directory to which you copied the java_src
files. Click Next to proceed.

d. In the Java Settings pane of the New Project wizard, click Finish. When
the Confirm Perspective Switch dialog appears, click Yes to approve
switching to the Java Perspective.

After you set up the project for the shared code and switch to the Java Perspective, two
Java packages—com.starsql.apps and com.starsql.grind—appear in the Package
Explorer pane, as shown in Figure 5.
StarSQL for Java User’s Guide 63

Using StarSQL for Java
Figure 5. StarSQL for Java Packages in the Eclipse Platform

4. Create a new project for each of the sample applications you want to build.

a. Select File–>New–>Project.

b. In the New Project wizard, select Java Project and click Next.

c. Enter a name for the project, such as CreateDS. For the Location, select the
Create Project at External Location option and browse to the appropriate
subdirectory of the working directory to which you copied the java_src
files (such as C:\samples\CreateDS). Click Next to proceed.

d. In the Java Settings window, click the Projects tab and select the project for
the shared code (the project you created in step 3 on page 64) to include it
on the build path for each of the other sample application projects.

e. If you are creating a project to build the CreateDS sample application, click
the Libraries tab of the Java Settings pane and click the Add External JARs
button. Browse to the StarSQL for Java installation directory and select the
StarSQL_JDBC.jar file.

f. Click Finish to create the project.

5. Export the project to create a JAR file for the Java sample application.

a. Select the desired project from the Package Explorer pane.

b. Right-click and select the Export command.

c. Select JAR file for the export destination and click Next.
64 StarSQL for Java User’s Guide

Using StarSQL for Java
d. Select the resource that corresponds to the sample application you are
building. Also specify the export destination, including an appropriate
name for the JAR file, and click Next.

e. In the JAR Packaging Options window, enable the option for saving the
description of the JAR in the workspace, specify an appropriate name for
the .jardesc file, and click Next.

f. For the Main Class field of the JAR Manifest Specification window, click
Browse and select the class that corresponds to the sample application you
are building. Click Finish to export the JAR file to the specified location.

6. Run the sample application.

a. To execute the application from within Eclipse, select the project, right-
click, and select the Run–>Run command.

b. In the Run window select Java Application and click New to add a
configuration for the project. Enter an appropriate name for the
configuration. On the Main tab, ensure that the correct Project is selected,
clicking Browse to select the correct project if necessary.

For the Main Class field, click Search and select the default package for
the sample application.

Click the Classpath tab, select User Entries and click the Add External
JARs button. Navigate to the StarSQL for Java installation directory and
select the StarSQL_JDBC.jar file. If you want to connect using a
datasource when you run the sample application, also add the
fscontext.jar and providerutil.jar files from the ext subdirectory.

c. Click Apply to save the configuration, and click Run to run the sample
application.
StarSQL for Java User’s Guide 65

Using StarSQL for Java
Managing Two-Phase Commit Transactions
A transaction is a collection of activities that involve changes to the database, all of
which must be executed successfully if the changes are to be committed to the database,
and none of which may be committed if any one or more of the activities fail. If one or
more of the activities fail, the transaction is considered “in-doubt” because its integrity
is questionable. Typically the Transaction Manager resolves in-doubt transactions
without user intervention.

StarSQL for Java includes a Transaction Log Manager application that you can use to
clear the StarSQL for Java transaction log or resolve in-doubt transactions. If the
Transaction Manager log or the DB2 transaction log is not available or is corrupt, follow
the instructions below to run the StarSQL for Java Transaction Log Manager.

• From a Mac OS X computer, use the Finder to open Applications/
starsql_java/samples, double-click samples.command, and select
TransactionLogManager.

• From other UNIX computers, run the runapp.sh
TransactionLogManager script or the samples.sh script.

• From a Windows computer, select Transaction Log Manager from the
StarSQL for Java program group.
66 StarSQL for Java User’s Guide

Using StarSQL for Java
Figure 4. Transaction Log Manager Application

Any transactions that are in-doubt appear in the display. Select the transaction and
choose whether you want to commit it, roll it back, or forget it. Click the Refresh button
to refresh the list of in-doubt transactions.
StarSQL for Java User’s Guide 67

Using StarSQL for Java
68 StarSQL for Java User’s Guide

CHAPTER 4 Preparing Hosts for StarSQL
Access
This chapter describes how to prepare host systems to enable StarSQL to provide access
to the host databases.

It covers:

• Preparation required for all hosts

• Preparing a DB2 for z/OS host

• Preparing a DB2 for i host

• Preparing a DB2 for Linux, UNIX, and Windows (LUW) host

• Preparing a Derby Network Server host

• Preparing a DB2 Server for VSE & VM

These sections cover details of the DB2 environment that are pertinent to StarSQL for
Java. For complete documentation of installation and configuration on the host, consult
IBM’s DB2 documentation, especially IBM’s DRDA Connectivity Guide.

Preparation Required for All Hosts
Each StarSQL user must have an account on the host and have permission to access the
necessary packages.

User Accounts

To connect to a DB2 database, each StarSQL for Java user needs an account on the host
database. An account consists of a user ID and password.
StarSQL for Java User’s Guide 69

Preparing Hosts for StarSQL Access
You need to provide the host user account information to each StarSQL for Java user

who needs to connect to the database.

Permissions

Usually a database administrator (DBA) is responsible for packages on the host,
including binding them and granting permissions to use them. Depending on the host
platform and the type of package used by the Java application, the DBA may need to
grant StarSQL for Java users explicit permissions to access data used by the application.

Preparing DB2 on a z/OS Host
Preparing DB2 on a z/OS host for access with StarSQL for Java primarily involves
configuring the Distributed Data Facility (DDF), which is a component of DB2 for
z/OS. Its primary task is to process DRDA requests. DDF must be active for a desktop
to connect to DB2 using StarSQL or any other DRDA requestor or client.

Configuring DDF

If your organization has not implemented distributed database capabilities, DDF may
not be configured and activated. The DSNTINST CLIST provides two panels—
DSNTIPR and DSNTIP5 for customizing a DB2 for z/OS subsystem to use native
DRDA TCP/IP support. The DSNTIP5 panel is specific for TCP/IP. However, to use
native TCP/IP support, you also must have APPC support configured and active
because DB2 uses the network ID and the LU name to identify units of work. You
specify the LU name that identifies the DB2 subsystem to VTAM and to uniquely
identify logical units of work, in the DSNTIPR panel.

The values specified on these panels are used to generate the JCL that stores them in the
DB2 bootstrap data set (BSDS) communication record.

If you are installing DB2, use the DDF panel DSNTIPR and DSNTIP5 to provide the
following parameters. To change the DDF parameters after installation, run a
customized configuration job DSNTIJUZ to update the BSDS.

• DDF Location Name. This name must be specified for the databaseName
parameter that StarSQL for Java uses to connect to the host.

• Password used when connecting DB2 to VTAM, if a password is
required.
70 StarSQL for Java User’s Guide

Preparing Hosts for StarSQL Access
• IP port to use for TCP/IP access. To enable support for TCP/IP, set the
DRDA port in the DDF to 446.

• IP port to use for two-phase commit. The RESYNC PORT parameter in
the DSNTIP5 panel specifies a TCP/IP port number for processing
requests for two-phase commit re-synchronization. The RESYNC PORT
must be different than the DRDA PORT.

For more information about establishing connectivity between client computers and
DB2 for z/OS over a TCP/IP network, the IBM Redbook, WOW! DRDA Supports
TCP/IP: DB2 Server for OS/390 and DB2 Universal Database, may be useful in
addition to the installation guide for your version of DB2 for z/OS. For complete
information about configuring DDF, consult IBM’s DB2 for z/OS installation
documentation and the IBM Redbook, Distributed Functions of DB2 for z/OS and
OS/390.

Starting DDF

Use the following command, which requires authority of SYSOPR or higher, to start
DDF:

-START DDF

When DDF starts successfully, the following messages are displayed:

DSNL003I - DDF IS STARTING
DSNL004I - DDF START COMPLETE LOCATION locname LU
netname.luname

If DDF has not been properly installed, the START DDF command fails and displays
the following message:

DSN9032I - REQUESTED FUNCTION IS NOT AVAILABLE

If DDF has already been started, the START DDF command fails and displays the
following message:

DSNL001I - DDF IS ALREADY STARTED

The following command shows whether DDF is running and, if so, the parameters that
it is using:

-DIS DDF
StarSQL for Java User’s Guide 71

Preparing Hosts for StarSQL Access
Supporting Password Management Using DRDA Flows

There are two host requirements to support the ability of StarSQL for Java users to
change their host passwords through StarSQL for Java on DB2 for z/OS, set Extended
Security to YES (EXTSEC=YES). The default is NO. This can be done using either

• the DSNTIPR (DDF) panel on the DB2 installation dialog.

• a customized configuration job DSNTIJUZ, with the option
EXTSEC=YES specified.

Using StarSQL with Stored Procedures

Stored procedures are application programs that reside on the host and are invoked via
DB2. They are usually written in a traditional programming language like COBOL,
RPG, or C. They may contain SQL statements for accessing the DB2 database or they
may be used to access non-DB2 resources.

You invoke a stored procedure using the SQL Call statement, and receive output data in
a result set or in output parameters. The Call statement is executed as any other SQL,
with a JDBC Statement, PreparedStatement, or CallableStatement.

Registering Stored Procedures

The stored procedure should be registered on the host so that calling application can
obtain information using the SQLProcedures and SQLProcedureColumns functions.
72 StarSQL for Java User’s Guide

Preparing Hosts for StarSQL Access
Use the CREATE PROCEDURE command to register the stored procedure in the
system. The CREATE PROCEDURE command automatically updates the
SYSIBM.SYSROUTINES catalog table.

CREATE PROCEDURE SYSPROC.STARPING (
IN REGION CHAR(8) CCSID EBCDIC,
IN PROGRAM CHAR(8) CCSID EBCDIC,
IN TRANSID CHAR(4) CCSID EBCDIC,
IN COMMLEN SMALLINT,
INOUT COMMAREA VARCHAR(32700) FOR BIT DATA,
OUT RC INTEGER,
OUT ABCODE CHAR(4) CCSID EBCDIC
)
PARAMETER STYLE GENERAL
LANGUAGE C
EXTERNAL NAME 'STARPING'
RESULT SETS 0
DETERMINISTIC
NO SQL
NO DBINFO
NO COLLID
ASUTIME NO LIMIT
NO WLM ENVIRONMENT
STAY RESIDENT NO
PROGRAM TYPE MAIN
SECURITY DB2
COMMIT ON RETURN YES

Calling Stored Procedures

To get a result set from the stored procedure call, use the following SQL statement
syntax for calling the stored procedure:

Call MyProc(?, ?, ?, ?)
StarSQL for Java User’s Guide 73

Preparing Hosts for StarSQL Access
Preparing a DB2 for i Host
This section discusses setting up a DB2 for i host for supporting a connection through
StarSQL for Java.

It covers:

• creating a library/collection for SQL packages

• determining the database name

• enabling DRDA over TCP/IP

• supporting password encryption, LOB data types, and two-phase commit
transactions

For complete information about setting up DB2 for i, consult IBM’s installation
documentation.

Creating a Library for SQL Packages

On DB2 for i, required SQL packages are stored in a collection or library. You may need
to create the collection or library on the host.

Use the CRTLIB command to create a new library for the SQL packages used by
StarSQL for Java. You can do this from a 5250 terminal session with a user ID that has
QSECOFR privileges. The library does not have to be a SQL collection, but it must be
accessible to all StarSQL users.

For example, the following command creates a new library named STARSQL:

CRTLIB STARSQL

Record the name of the library, as it must be specified as the collection property

when configuring a data source to be used by StarSQL for Java.

Determining the Database Name

Determine the Relational Database (RDB) name of the DB2 for i. From the DB2
command line, enter:

WRKRDBDIRE

Look for an entry with a Remote Location value of *LOCAL. If such an entry does not
exist, create it with the 1=ADD option. A common convention is to use the same name
as the DB2 for i system name for the database name.
74 StarSQL for Java User’s Guide

Preparing Hosts for StarSQL Access
Make a note of the database name as you need to specify it as the databaseName

property when configuring the data source used by the client computers.

Enabling DRDA Over TCP/IP

The Distributed Data Management (DDM) server allows client computers to access the
DB2 functions. The DDM server supports remote SQL access, record level access, and
remote journals. To initiate a DDM server job using TCP/IP communications a DRDA
application or DDM source system connects to the well-known port number for TCP/IP,
port 446 or 447. The DDM listener program, upon accepting the connection request,
issues an internal request to attach the client’s connection to a DDM server job.

The DDM listener program runs in a batch job in the QSYSWRK subsystem. There is
one listener program that serves potentially many DDM server jobs. If you have access
to iSeries Navigator you can verify whether DDM is configured by selecting TCP/IP
from the Network–>Servers menu.

Follow the steps below if you need to configure a host running DB2/400 v4r2 and later
to accept DRDA requests over TCP/IP:

1. Log on to the DB2 host.

2. Change the DDM TCP/IP Attributes to automatically start the listener program
by entering:

CHGDDMTCPA AUTOSTART(*YES)

3. Start the TCPIP DDM Server by entering:

STRTCPSVR SERVER(*DDM)

When you are logged on to the DB2 host, you can examine which port DB2 is using to
listen for DRDA requests using either the WRKSRVTBLE or the WRKTCPSTS
command.

To use the WRKSRVTBLE command:

1. Enter WRKSRVTBLE.

2. Look for the DRDA entry with the port number.
StarSQL for Java User’s Guide 75

Preparing Hosts for StarSQL Access
To use the WRKTCPSTS command:

1. Enter WRKTCPSTS.

2. Choose option 3, “Work with TCP/IP connection status.”

3. Find the entry with port “drda” and press “F14=Display port numbers.” The
default port number for DRDA is 446.

Registering Stored Procedures on DB2 for i

This section describes issues regarding stored procedures that are specific to IBM i
hosts. Refer to "Using StarSQL with Stored Procedures" on page 72 for general
information about using stored procedures.

Following is sample SQL for registering a stored procedure on an IBM i system. It
assumes that the COBOL program MYLIB.MYPRGM already exists on the system.
This statement modifies the QSYS2.SYSPROCS and QSYS2.SYSPARMS catalog
tables for you.

CREATE PROCEDURE MYLIB.MYPROC (INOUT PARM1 CHAR(10))
EXTERNAL NAME MYLIB.MYPGM LANGUAGE COBOL GENERAL

In the above example, the procedure name is MYLIB.MYPROC, which references the
COBOL program MYLIB.MYPGM. The program takes one input parameter called
PARM1 which is a char field of length 10. This procedure does not return a result set.

Refer to the IBM SQL Reference and SQL Programming Guide for the appropriate
version of IBM i for more information on registering a stored procedure and the full
syntax of the CREATE PROCEDURE statement.

Configuring Support for the SSL Protocol

To configure an IBM i host system to use the Secure Sockets Layer (SSL) protocol you
must have the following components for an AS/400 host system:

• Digital Certificate Manager - 5722-SS1 (v5rx), 5761-SS1 (6.1), or 5770-
SS1(7.x) option 34

• TCP/IP Connectivity Utilities - 5722-TC1(v5r4), 5761-TC1 (6.1), or
5770-SS1 (7.x)
76 StarSQL for Java User’s Guide

Preparing Hosts for StarSQL Access
• IBM HTTP Server - 5722-DG1 (v5rx), 5761-DG1 (6.1) or 5770-DG1
(7.x)

Following are general procedures for configuring SSL on the IBM i host. Refer to your
IBM documentation for details, especially the IBM i system documentation and the
“IBM iSeries Wired Network Security OS/400 V5R1 DCM and Cryptography
Enhancements” Redbook.

1. Start the Admin HTTP instance and use a browser to configure the Digital
Certificate Manager.

a. Create a local Certificate Authority or obtain a certificate from a public
Internet Certificate Authority.

b. Create a *SYSTEM certificate store.

c. Use “Manage Applications” to assign a server certificate to the OS/400
DDM/DRDA server.

d. After you assign the certificate, restart the DDM/DRDA server:
ENDTCPSVR *DDM
STRTCPSVR *DDM

2. If necessary, set the port on which the DDM/DRDA server listens for SSL
conversations. The default port for SSL is 448.

Considerations for Specific IBM i Releases

In general, it is a good idea to stay current on PTF packages and the DB2 Group PTF,
and to use the latest version of StarSQL. The following sections describe more specific
issues for particular versions of OS/400.

IBM i 6.1 Issues

If you are using V6R1, ensure that the following PTFs are either installed or superseded:

• cum C8064610 or later

• PTF 5761SS1-SI30581

OS/400 v5r4 Issues

If you are running V5R4 of the i5/OS, ensure that the following PTFs are either
installed or superseded:

• PTF 5722SS1-SI23461

• PTF 5722SS1-SI24317
StarSQL for Java User’s Guide 77

Preparing Hosts for StarSQL Access
If you are using StarSQL to invoke Java stored procedures on an AS/400, make sure the
following PTF is installed:

• PTF 5722SS1-SI22551

If your host needs to support BLOB data, make sure the following PTFs are installed:

• PTF 5722SS1-SI22324

• PTF 5722SS1-SI22335

•

Preparing a DB2 LUW Host
This section provides details for setting up a DB2 for Linux, UNIX, and Windows host
to support a connection through StarSQL for Java. It covers:

• enabling DRDA support for TCP/IP

• locating the database name

For complete information about setting up DB2 for LUW, consult IBM’s installation
documentation.

Enabling DRDA Support for TCP/IP

When using TCP/IP to connect to a DB2 for LUW host, make sure that the host has a
static IP address. You may experience problems installing DB2 LUW on a computer
using DHCP. To be recognized, the system requires an entry in the DNS (Domain Name
Server) or an entry in the HOSTS file.

Although you can configure StarSQL for Java to communicate with DB2 using any
available port, port 446 is the standard port used for DRDA communications and is the
default value that StarSQL uses if another is not specified. DB2 LUW uses a default
value of 50000 for DRDA communications.

If there is a fire wall that monitors network traffic to the host, be sure that it allows
DRDA communications to pass through the port that you configure for DRDA requests.

Using db2 Commands to Specify the DRDA Port

Issue the following db2 commands to change the port that DB2 uses for DRDA
communications.

1. Enter the following command to determine on which port DB2 is listening to
for TCP/IP communications.

db2 get dbm configuration
78 StarSQL for Java User’s Guide

Preparing Hosts for StarSQL Access
In the dbm configuration, look for “TPC/IP Service Name (SVCENAME).” It
will have a value similar to “db2c_DB2.” This is the symbolic name of the
connection port.

2. Find the symbolic name of the connection ports in the services file, which is
typically located in /etc/services.

3. Edit the services field and change the value of the TCP/IP connection port to
446 and set the interrupt port to 447.

4. Restart the DB2 instance for the changes to take effect.

To verify that DB2 is listening on the correct port, from either the client or the server
enter:

telnet <host> 446

If DB2 is listening on that port, no error is returned to the telnet window. If DB2 is not
listening on that port, you will see an error similar to the following and may need to
contact your DB2 administrator for the correct port number to use:

Could not open connection to the host, on port 446: Connect
failed.

Click the Close (X) icon to close the telnet window.

Enabling Encryption

If you configure the StarSQL for Java driver to send encrypted user IDs and passwords
(see "pwdEncryption Parameter" on page 39), be sure to enable the database for
encryption. On a DB2 for Linux, UNIX, and Windows host you enable encryption by
setting the Server Connection Authentication (SRVCON_AUTH) parameter to “Server
encrypt” and restarting the instance.

Using db2 Commands to Enable Encryption

Issue the following db2 commands to enable encryption.

1. To enable encryption from a db2 command window, enter the following
command:

db2 update dbm cfg using SRVCON_AUTH
SERVER_ENCRYPT

2. Stop and restart the instance by issuing the following commands:

db2stop
db2start
StarSQL for Java User’s Guide 79

Preparing Hosts for StarSQL Access
Locating the Database Name

When an administrator sets up a DB2 for LUW system, they assign names to DB2
databases. You will need to enter the Database Name for the databaseName property
when you configure data sources on the desktop. You can display a list of the databases
that have been created by issuing the following command:

db2 list database directory

Contact your database administrator if you need to determine which databases should be
accessible to StarSQL for Java clients.

Preparing a Derby Network Server Host
The Derby Network Server is part of the Derby software distribution and provides a
framework for multi-user connectivity to Derby databases across a network. Derby must
be started in the Network Server mode (vs. the embedded mode) for client computers to
connect to a Derby database using StarSQL for Java.

The default of the Derby Network Server is to start with user authentication disabled.
Refer to the Derby documentation for information about enabling user authentication
and running under the Java security manager to help avoid security problems.

Setting Network Server Properties

Typically the Java system property derby.system.home specifies the system
directory, which contains subdirectories that hold the databases that are available to the
Derby Network Server. If you do not explicitly set the derby.system.home
property when starting Derby, the default is the directory in which Derby was started.
You need to specify at least the name of the database you want to access with the
StarSQL for Java driver and which port to use. Contact your database administrator if
you do not know which Derby databases should be accessible to StarSQL for Java
clients.

The Network Server properties can be specified three ways:

• on the command line

• in the .bat or .ksh files, loading the properties by executing java -D

• in the derby.properties file

Properties in the command line or in the .bat or .ksh files take precedence over the
properties in the derby.properties file. Arguments included on commands that are issued
on the command line take precedence over property values.
80 StarSQL for Java User’s Guide

Preparing Hosts for StarSQL Access
The properties that are particularly of interest for using the StarSQL for Java driver are
those that allow remote connections and determine which protocol to use.

derby.drda.host=hostname
derby.drda.portNumber=portnumber
derby.drda.sslMode=SSL | TLS || SSLv3 | TLSv1

Enabling Remote Connections

The default of the Derby Network Server is to start with user authentication disabled.
Before you enable remote connections ensure that you are running under the security
manager and that user authorization is enabled. Refer to the Derby documentation for
details about enabling user authentication and running under the Java security manager.

The derby.drda.host property causes the Network Server to listen on a specific
interface, allowing multiple instances of Network Server to run on a single computer
with a unique host:port combination. By default the Derby Network Server listens only
on the loopback IP address (127.0.0.1) and port 1527, which restricts access to the local
computer. To make the Derby Network Server accessible to other computers on the
network, specify a particular interface (host name or IP address) and specify a port
number other than 1527 on which to listen for connections. The Derby Network Server
must listen for connections on the same port that the StarSQL for Java driver is
configured to use, which is port 446 by default.

The following shows how to use a java command to start the Derby Network Server to
listen on port 446 for connection requests from any host name or IP address.

java -jar $DERBY_HOME%\lib\derbyrun.jar server start
-h 0.0.0.0 -p 446

The -h and -p options can be specified regardless of how you choose to start Derby
Network Server. Refer to the Derby documentation for details about the additional
methods, such as running the startNetworkServer script or using a java command to
directly invoke the NetworkServerControl class.

Configuring Support for the SSL Protocol

The Derby Network Server supports network security with Secure Socket
Layer/Transport Layer Security (SSL/TLS). With SSL/TLS the client-server
communication protocol is encrypted and both the client and the server may,
independently of each other, require certificate-based authentication of the other part.
You can configure SSL for the Derby Network Server to be Off, or to use SSL
encryption with no peer authentication (basic), or to use SSL encryption and peer
authentication (peerAuthentication). To enable SSL support, use the ssl option on the
command line when you start Derby or specify the derby.drda.sslMode property
in derby.properties.
StarSQL for Java User’s Guide 81

Preparing Hosts for StarSQL Access
For example, the following command would start Derby Network Server using the
“basic” SSL encryption option:

java -jar derbyrun.jar server start -ssl basic

You also need to use the keytool to create a server key pair, and specify the key store
and password when starting the server. For SSL operation the server always needs a key
pair. If the server runs in peer authentication mode, then each client needs its own key
pair. The keytool is located in the JRE bin directory. Entering the following command
prompts for the information needed to generate a key pair.

keytool -genkey myDatabase -keystore serverKeyStore.key

The key pair is located in a file which is called a key store and the JDK’s SSL provider
needs the system properties javax.net.ssl.keyStore and
javax.net.ssl.keyStorePassword to access the key store. Specify the key
store and password when starting the server, such as shown below:

java -Djavax.net.ssl.keyStore=serverKeyStore.key \
-Djavax.net.ssl.keyStorePassword=myPassword \
-jar %DERBY_HOME%\lib\derbyrun.jar server start

-h 0.0.0.0 -p 446 -ssl basic

Refer to the Derby documentation at
http://db.apache.org/derby/docs/10.4/adminguide/cadminsslkeys.html for additional
details about key and certificate handling.

Configuring the StarSQL for Java for Derby Connections

To use the StarSQL for Java driver to connect a client computer to a Derby host,
StarSQL must be configured with the sendUnicode parameter set to True and the
decimalDelimiter parameter set to host. Refer to "StarSQL for Java
Configuration Properties" on page 29 for discussion of these and other parameters that
can be configured for the StarSQL for Java driver.

Preparing a DB2 Server for VSE & VM
Support for the TCP/IP network protocol was made available beginning with DB2 for
VSE v7.1 and DB2 for VM v6.1. Version 6.1 of DB2 for VM also was the first release
to support stored procedures. Contact StarSQL Customer Support if you want to use
StarSQL over an SNA network to access a DB2 Server for VSE or VM.

When you configure the StarSQL data source, specify the dbname parameter as the
Database Server Name in the data source. For VSE the database name typically is
defined in the DBNAME directory to allow the database administrator to ensure that a
unique TCP/IP port number is assigned for each DB2 Server for VSE. The application
server must be able to determine on which TCP/IP port to listen for connections. The
82 StarSQL for Java User’s Guide

http://db.apache.org/derby/docs/10.4/adminguide/cadminsslkeys.html

Preparing Hosts for StarSQL Access
DBNAME directory contains an entry for each DB2 server that specifies the dbname
and the TCP/IP port number to use (the TCPPORT parameter). The TCP/IP port also
can be specified using the TCPPORT initialization parameter, as described in the DB2
Server for VSE & VM Operation manual.

For VM the dbname parameter is specified in the CMS Communications Directory in
the CMS file of type NAMES.

Refer to your IBM documentation for details about configuring DB2 Server to support
DRDA connections over a TCP/IP network. The System Administration Guide for VSE
v7.3 is publication number SC09-2981, and for VM v7.3 the publication number is
SC09-2980.
StarSQL for Java User’s Guide 83

Preparing Hosts for StarSQL Access
84 StarSQL for Java User’s Guide

CHAPTER 5 Binding Packages
A SQL package is an object that DB2 uses to process a SQL statement. Different
packages are required, depending on configuration parameters, to execute dynamic
SQL. Note that Derby uses JDBC's Prepared Statement, and does not provide SQL
commands for dynamic SQL. Derby does use standard packages that are provided by
the DBMS to determine whether to use held cursors, as further described in "Derby
Held Cursors Packages" on page 91.

For DB2 host systems the StarSQL for Java driver assumes that the dynamic SQL
package already exists in the host database. If the StarSQL for Java driver cannot find
the required packages when they are needed, it creates them automatically.

The names and locations of the packages that are bound vary depending on the values
that are specified for certain configuration settings in the data source definition, or in the
connection URL, when the initial connection is made.

The StarSQL for Java user requires certain permissions to bind and use packages on the
host. Typically, the package will be created by an administrator and other users will be
granted permission to use the packages.

You can use the StarAdmin utility, which is available from StarQuest, to bind packages
on a host. Packages that are bound using StarAdmin can be used by any version (Java,
Linux, UNIX, or Windows) of the StarSQL driver.

Using Dynamic SQL Packages
There are several packages that can be used for executing dynamic SQL. The default
dynamic package varies by host platform. Some dynamic packages are used based on
the desired transaction isolation level and the heldCursors, keepDynamic, and
dynamicRules settings configured in the data source or in the connection URL.
StarSQL for Java User’s Guide 85

Binding Packages
The isolation level is set when the application calls the setTransactionIsolation() method
on the java.sql.Connection object. The section "StarSQL for Java Configuration
Properties" on page 29 describes the heldCursors, keepDynamic, and dynamicRules
properties. If you set the dateFormat configuration property to use a date format other
than the standard JDBC format (yyyy-mm-dd), you must bind a different package, as
described on page 34.

Table 12 shows the standard dynamic packages that can be bound.

Table 12. Dynamic Packages

Package Name Isolation Level and heldCursors Setting

SWRC0000 Read Committed / heldCursors no

SWNC0000 Commit None/heldCursors no

SWRR0000 Repeatable Read / heldCursors no

SWRU0000 Read Uncommitted / heldCursors no

SWTS0000 Serializable / heldCursors no

SWRC1000 Read Committed / heldCursors yes

SWRR1000 Repeatable Read / heldCursors yes

SWRU1000 Read Uncommitted / heldCursors yes

SWTS1000 Serializable / heldCursors yes
86 StarSQL for Java User’s Guide

Binding Packages
Table 13 through Table 15 show the packages that can be bound when using the
keepDynamic option, or if the dynamicRules option is set to BIND. These tables are
only applicable for hosts running DB2 for OS/390 v5.1 and later.

Table 13. Dynamic Packages on DB2 for z/OS with
keepDynamic=Yes

Table 14. Dynamic Packages on DB2 for z/OS with
dynamicRules=BIND and keepDynamic=No

Package Name Isolation Level and heldCursors Setting

SWRC4000 Read Committed / heldCursors no

SWRR4000 Repeatable Read / heldCursors no

SWRU4000 Read Uncommitted / heldCursors no

SWTS4000 Serializable / heldCursors no

SWRC5000 Read Committed / heldCursors yes

SWRR5000 Repeatable Read / heldCursors yes

SWRU5000 Read Uncommitted / heldCursors yes

SWTS5000 Serializable / heldCursors yes

Package Name Isolation Level and heldCursors Setting

SWRC2000 Read Committed / heldCursors no

SWRR2000 Repeatable Read / heldCursors no

SWRU2000 Read Uncommitted / heldCursors no

SWTS2000 Serializable / heldCursors no

SWRC3000 Read Committed / heldCursors yes
StarSQL for Java User’s Guide 87

Binding Packages
Table 15. Dynamic Packages on DB2 for z/OS with
dynamicRules=BIND and keepDynamic=Yes

Permissions Required for Packages
This section describes the permissions that are required to bind packages and to use
packages.

For Binding Packages

If the required dynamic SQL package does not already exist, StarSQL for Java
automatically creates it on the first execution of an SQL statement.

SWRR3000 Repeatable Read / heldCursors yes

SWRU3000 Read Uncommitted / heldCursors yes

SWTS3000 Serializable / heldCursors yes

Package Name Isolation Level and heldCursors Setting

SWRC6000 Read Committed / heldCursors no

SWRR6000 Repeatable Read / heldCursors no

SWRU6000 Read Uncommitted / heldCursors no

SWTS6000 Serializable / heldCursors no

SWRC7000 Read Committed / heldCursors yes

SWRR7000 Repeatable Read / heldCursors yes

SWRU7000 Read Uncommitted / heldCursors yes

SWTS7000 Serializable / heldCursors yes

Package Name Isolation Level and heldCursors Setting
88 StarSQL for Java User’s Guide

Binding Packages
The user who performs the package binding must have permission to bind packages in
the host database. On DB2 for i, the DBA must grant CREATE permission for this user
for the specified library. On other hosts, the DBA must grant CREATE IN
COLLECTION and BINDADD permissions. The binding will fail if the user does not
have these permissions.

After the StarSQL for Java packages have been bound, the DBA administrator can
revoke these permissions.

For Using Packages

After the packages have been bound, the DBA must grant StarSQL for Java users
permission to execute them. On DB2 for i, users must be granted *USE permission on
the packages, which can usually be done by the package owner. On other hosts, the
DBA must grant StarSQL for Java users EXECUTE or RUN permissions on the
packages.

On all hosts, except for DB2 for z/OS, for applications that use dynamic SQL, the
StarSQL for Java user needs explicit permissions to read (SELECT) and write
(UPDATE/INSERT/DELETE) the columns and tables accessed by the application. The
DBA needs to grant these permissions to “public” or to the various groups.

On DB2 for z/OS, the required permissions depend on the setting of the dynamicRules
property. If the dynamicRules property is set to RUN, which is the default, the StarSQL
for Java user needs explicit permissions to read and write the columns and tables
accessed by the application. If the dynamicRules property is set to BIND, the user has
the permissions of the package owner, except that the following SQL statements cannot
be executed regardless of the permissions of the package owner:

• SET CURRENT SQLID

• GRANT

• REVOKE

• ALTER

• CREATE

• DROP

• Any SQL statement that cannot be prepared as a dynamic SQL statement.

See "dynamicRules Parameter" on page 37 for details about setting the dynamicRules
property.
StarSQL for Java User’s Guide 89

Binding Packages
Granting Use Permissions

To grant EXECUTE authority on the SQL packages you can execute SQL statements
similar to those shown in the following sections

For DB2 for z/OS

Using SPUFI on the host or the SQL pass through mode of a JDBC-enabled application,
such as the sample QueryApp application, execute the following SQL statements:

GRANT EXECUTE ON PACKAGE
STARSQL.SWRC5000
TO PUBLIC

For DB2 for LUW (Linux, UNIX & Windows)

Using the DB2 Command Line Processor or the SQL pass through mode of a JDBC-
enabled application, such as the sample QueryApp application, execute the following
SQL statements:

GRANT EXECUTE ON PACKAGE
STARSQL.SWRC0000
TO PUBLIC

For DB2 for i

There are several methods available in the IBM i environment for granting EXECUTE
privileges. You can:

• use STRSQL, which is the interactive SQL interpreter, available in the
Query Manager and SQL Development Kit, Licensed Program 57xx-
ST1.

• use the SQL pass through mode of a JDBC-enabled application, such as
the sample QueryApp application

• use CRTQMQRY/STRQMQRY or RUNSQLSTM to run a file that
contains the SQL commands

• use the db2 command of the QSH environment

Regardless of which method you use, execute the following SQL statements to grant
EXECUTE authority on the SQL package:

GRANT EXECUTE ON PACKAGE
STARSQL.SWNC0000
TO PUBLIC
90 StarSQL for Java User’s Guide

Binding Packages
In addition, you can use IBM i authority commands to grant *USE authority for all
users (*PUBLIC) to the library packages:

1 . From a 5250 session, enter WRKLIB <package library name>.

2. Select Option 12 (work with objects).

3. Select Option 2 (edit authority on each object one at a time).

4. Change PUBLIC *EXCLUDE to PUBLIC *USE.

Another alternative is to use the GRTOBJAUT command from a 5250 session to grant
*USE authority for the library and EXECUTE authority for the packages to all users.
The following example assumes that the package library is named “STARSQL.”

GRTOBJAUT OBJ(STARSQL) OBJTYPE(*LIB) USER(*PUBLIC)
AUT(*USE)
GRTOBJAUT OBJ(STARSQL/*ALL) OBJTYPE(*ALL)
USER(*PUBLIC) AUT(*USE)

Derby Held Cursors Packages
Derby uses packages that are supplied by the DBMS to reflect the requested isolation
level and whether the cursor is held. Setting the transaction isolation level for a
connection allows a user to specify how severely the user’s transaction should be
isolated from other transactions. If a connection does not specify its isolation level, it
inherits the default isolation level for the Derby system. To override the inherited
default value, use the methods of java.sql.Connection or use the WITH clause
to change the isolation level for the current statement only (not the transaction).

The following table shows the java.sql.Connection isolation levels that are
supported and the package that is used depending on whether the cursor is held open
after a commit takes place.

Table 16. Derby Isolation Level and Held Cursor Packages

Cursor Isolation Level Held Not Held

TRANSACTION_NONE SYSLH0000 SYSSLN000

TRANSACTION_READ_UNCOMMITTED SYSLH100 SYSLN100
StarSQL for Java User’s Guide 91

Binding Packages
TRANSACTION_READ_COMMITTED SYSLH200 SYSLN200

TRANSACTION_REPEATABLE_READ SYSLH300 SYSLN300

TRANSACTION_SERIALIZABLE SYSLH400 SYSLN400

Cursor Isolation Level Held Not Held
92 StarSQL for Java User’s Guide

Appendix A National Language Support
StarSQL for Java is a pure Java JDBC driver that converts JDBC calls into the
Distributed Relational Database Architecture (DRDA) protocol used by most host
database systems. These host database systems use a variety of character encodings to
support the diverse languages and cultures of the world.

Java applications use the Unicode Standard to represent all characters. The Unicode
Standard defines a unique number for every character, regardless of the platform or
language. This version of StarSQL for Java supports the JDBC 3.0 API, and uses
Unicode to support double-byte and multi-byte character sets.

When connected to a host configured for single-byte character set (SBCS) data,
StarSQL for Java sends SQL statements and input data to DB2, converting Unicode data
to the host-specified CCSID for SBCS data. IBM developed the Coded Character Set
Identifier (CCSID) numbering system to represent a character set, a code page, an
encoding scheme, and additional coding-related information.

To determine the desired language for the client computer, StarSQL for Java uses the
locale that is configured for the JVM. A locale defines a particular combination of
language and region. Data from the host is automatically converted to Unicode.

Character encoding conversion supports converting text between Unicode and other
character encodings when receiving and sending data between a host and client
computer. Java provides a set of classes that convert many standard character encodings
to and from Unicode. The character encodings that these classes support are listed in the
Oracle Java documentation. Contact StarQuest Customer Support to request that
additional languages or codesets be supported by StarSQL for Java.

If the locale for the JVM specifies that the client is using a double-byte language
(Chinese, Japanese, or Korean), the StarSQL for Java driver sends mixed-byte character
set (MBCS) data to the host using CCSID 1208 (UTF-8), and double-byte character set
(DBCS) and GRAPHIC data using CCSID 1200 (UTF-16).
StarSQL for Java User’s Guide 93

National Language Support
For SBCS data you can control which CCSID is used by setting the typdefovr property
(described on page 41) of StarSQL for Java. If the host computer is configured to
support Chinese, Japanese, or Korean characters sets, using EBCDIC or Unicode to
represent the DBCS and MBCS character sets, you must set the sendUnicode property
of the StarSQL driver to True (see "sendUnicode Parameter" on page 40).

Determining the Default Character Set of the Client
StarSQL determines the local client’s code page according to the default locale that is
set for the JVM or JRE. To determine the name of the default character set for a local
system you can run the following program.

import java.io.*;
import java.nio.charset.*;

public class Encode3 {
 public static void main(String args[])

throws IOException {
 FileWriter filewriter =

new FileWriter("out");
String encname =

filewriter.getEncoding();
filewriter.close();
System.out.println(

 "default charset is: " + encname);

}
}

Running this program should display a result such as:

default charset is: Cp1252

If the default character set is for a Group 2 language (Chinese, Japanese, or Korean),
StarSQL for Java sends Unicode data to the host. For all other languages, StarSQL for
Java sends the data using the coded character set specified by the typdefovr (page 41)
property.

To control the SBCS CCSID that StarSQL for Java uses to send outbound data, you can
modify the typfefovr value for the StarSQL data source as described in "typdefovr
Parameter" on page 41.

Determining Which Character Set Conversions are Supported
StarSQL for Java uses the Java classes and libraries to convert from one character set to
another. Translation errors can occur if the JVM/JDK that is installed does not include
the necessary character converters. You can run the following program to determine
which character sets are supported by the Java environment.
94 StarSQL for Java User’s Guide

National Language Support
import java.nio.charset.Charset;
import java.util.Iterator;
import java.util.Map;

public class AvailableCharSets {
 public static void main(String[] args) {
Map charSets = Charset.availableCharsets();
Iterator it = charSets.keySet().iterator();
while (it.hasNext()) {

String csName = (String) it.next();
System.out.print(csName);
Iterator aliases = ((Charset)
charSets.get(csName)).aliases() .iterator();
if (aliases.hasNext())
System.out.print(": ");
while (aliases.hasNext()) {
System.out.print(aliases.next());
if (aliases.hasNext())
System.out.print(", ");
}
System.out.println();
}

 }
}

Running this program outputs a list of the character sets for which Java converters are
available, such as shown in the following excerpt.

Big5: csBig5

Big5-HKSCS: big5-hkscs, Big5_HKSCS, big5hkscs

EUC-JP: eucjis, x-eucjp, csEUCPkdFmtjapanese, eucjp,
Extended_UNIX_Code_Packed_Format_for_Japanese, x-euc-jp, euc_jp

EUC-KR: ksc5601, 5601, ksc5601_1987, ksc_5601, ksc5601-1987,
euc_kr, ks_c_5601-1987, euckr, csEUCKR

GB18030: gb18030-2000

GBK: windows-936, CP936

ISO-2022-JP: jis, jis_encoding, csjisencoding, csISO2022JP,
iso2022jp

ISO-2022-KR: ISO2022KR, csISO2022KR

ISO-8859-1: iso-ir-100, 8859_1, ISO_8859-1, ISO8859_1, 819,
csISOLatin1, IBM-819, ISO_8859-1:1987, latin1, cp819, ISO8859-1,
IBM819, ISO_8859_1, l1

ISO-8859-13: iso8859_13
StarSQL for Java User’s Guide 95

National Language Support
ISO-8859-15: 8859_15, csISOlatin9, IBM923, cp923, 923, L9, IBM-
923, ISO8859-15, LATIN9, ISO_8859-15, LATIN0, csISOlatin0,
ISO8859_15_FDIS, ISO-8859-15

ISO-8859-2: l2, iso-ir-101, ISO_8859-2:1987, ISO_8859-2, latin2,
csISOLatin2, iso8859_2

ISO-8859-3

ISO-8859-4: iso-ir-110, l4, latin4, csISOLatin4, iso8859_4,
ISO_8859-4:1988, ISO_8859-4

ISO-8859-5: cyrillic, iso8859_5, ISO_8859-5, iso-ir-144,
csISOLatinCyrillic

ISO-8859-6

ISO-8859-7: greek8, ECMA-118, sun_eu_greek, ELOT_928, ISO_8859-
7:1987, iso-ir-126, ISO_8859-7, iso8859_7, greek, csISOLatinGreek

ISO-8859-8

ISO-8859-9: iso-ir-148, latin5, l5, ISO_8859-9, ISO_8859-9:1989,
csISOLatin5, iso8859_9

JIS_X0201: JIS_X0201, X0201, JIS0201, csHalfWidthKatakana

JIS_X0212-1990: jis_x0212-1990, iso-ir-159, x0212, JIS0212,
csISO159JISX02121990

KOI8-R: koi8, cskoi8r

Shift_JIS: shift-jis, x-sjis, ms_kanji, shift_jis, csShiftJIS,
sjis, pck

TIS-620

US-ASCII: ISO646-US, IBM367, ASCII, cp367, ascii7, ANSI_X3.4-
1986, iso-ir-6, us, 646, iso_646.irv:1983, csASCII, ANSI_X3.4-
1968, ISO_646.irv:1991

UTF-16: UTF_16

UTF-16BE: X-UTF-16BE, UTF_16BE, ISO-10646-UCS-2

UTF-16LE: UTF_16LE, X-UTF-16LE

UTF-8: UTF8

windows-1250: cp1250

windows-1251: cp1251

windows-1252: cp1252

windows-1253: cp1253

windows-1254: cp1254

windows-1255
96 StarSQL for Java User’s Guide

National Language Support
windows-1256

windows-1257: cp1257

windows-1258

windows-31j: csWindows31J, windows-932, MS932

x-EUC-CN: gb2312, EUC_CN, euccn, euc-cn, gb2312-80, gb2312-1980

x-euc-jp-linux: euc_jp_linux, euc-jp-linux

x-EUC-TW: cns11643, euc_tw, EUC-TW, euctw

x-ISCII91: iscii, ST_SEV_358-88, iso-ir-153, csISO153GOST1976874,
ISCII91

x-JIS0208: JIS_C6626-1983, JIS0208, csISO87JISX0208, x0208,
JIS_X0208-1983, iso-ir-87

x-Johab: johab, ms1361, ksc5601-1992, ksc5601_1992

x-MS950-HKSCS: MS950_HKSCS

x-mswin-936: ms936, ms_936

x-windows-949: windows949, ms_949, ms949

x-windows-950: windows-950, ms950
StarSQL for Java User’s Guide 97

National Language Support
StarSQL for Java includes built-in conversions for some CCSIDs (such as 37, 273, 277,
278, 280, 284, 285, 297, 500, 871, 1140 through 1149, and 1252). StarSQL for Java uses
the following character set names when it needs to access the Java-supplied converters.

367 = "ASCII"

420 = "Cp420"

424 = "Cp424"

620 = "TIS620"

813 = "ISO8859_7"

819 = "ISO8859_1"

850 = "Cp850"

852 = "Cp852"

855 = "Cp855"

856 = "Cp856"

857 = "Cp857"

858 = "Cp858"

869 = "Cp869"

870 = "Cp870"

874 = "Cp874"

875 = "Cp875"

912 = "ISO8859_2"

915 = "ISO8859_5"

916 = "ISO8859_8"

918 = "Cp918"

920 = "ISO8859_9"

921 = "ISO8859_13"

922 = "Cp922"

923 = "ISO8859_15"

930 = "Cp930"

933 = "Cp933"

935 = "Cp935"

937 = "Cp937"

939 = "Cp939"
98 StarSQL for Java User’s Guide

National Language Support
1006 = "Cp1006"

1025 = "Cp1025"

1026 = "Cp1026"

1046 = "Cp1046"

1097 = "Cp1097"

1098 = "Cp1098"

1112 = "Cp1112"

1122 = "Cp1122"

1123 = "Cp1123"

1124 = "Cp1124"

1200 = "UnicodeBigUnmarked"

1201 = "UnicodeBigUnmarked"

1202 = "UnicodeLittleUnmarked"

1208 = "UTF8"

1250 = "Cp1250"

1253 = "Cp1253"

1254 = "Cp1254"

1255 = "Cp1255"

1256 = "Cp1256"
StarSQL for Java User’s Guide 99

National Language Support
100 StarSQL for Java User’s Guide

Appendix B Troubleshooting Tips and
Techniques
This appendix provides details about using the tracing and logging utilities to help
troubleshoot communication problems, along with other tips and techniques for
maximizing use of StarSQL for Java.

Troubleshooting Communication Problems
The StarSQL for Java driver provides a facility for tracing API activity and logging
DRDA communications between the driver and the DRDA host. You can log driver
events, errors, API calls, and other internal driver activity to the console or a file, or to
both. Typically only messages of high severity are logged to the console and you should
not need to enable other logging unless you are working with a StarQuest Technical
Support engineer to troubleshoot a problem.

The amount and the type of information that is logged is determined by the log level,
which can be different for the console messages and the file messages. For example,
you can log informational messages to file while you have only severe messages display
on the computer monitor.

StarSQL for Java supports seven levels of logging. As illustrated in Figure 5, the
amount of information that is logged increases as the levels of logging become more
broad. The ALL level logs all activity, including DRDA communication between the
driver and host. The FINER level logs API calls and other internal method calls.

The broad levels of logging can significantly degrade performance of all computers
involved in the communications. If you need to enable logging to troubleshoot a
problem, remember to disable it as soon as you have logged the necessary messages.
StarSQL for Java User’s Guide 101

Troubleshooting Tips and Techniques
Figure 5. Logging Levels

If you do not configure logging, only messages with a level of SEVERE are logged to
the console. If you want to enable a different level of logging, or log messages to file,
you must configure the logging facility.

Configuring the Logging Facility

The following steps describe how to configure the logging facility.

1 . Copy the sample configuration file, sqlogging.properties, that is
provided with StarSQL for Java from the StarSQL installation directory to a
working directory.

2. Use a text editor to change the values of the sqlogging.properties file
as desired. Table 17 describes the properties that you can configure to control
logging.

3. Copy the customized sqlogging.properties file to the lib directory
where the JRE is installed. This typically is a directory such as C:\Program
Files\Java\jdk1.5.0_09\jre\lib on Windows, or /usr/jdk1.5.0_09/jre/lib on
UNIX. If you have more than one JVM installed, copy the configured
sqlogging.properties file to each lib directory.

Table 17 describes the properties that you can configure to control logging. The logging
facility uses two handlers. The ConsoleHandler writes messages to the computer
monitor, and the FileHandler writes messages to file. The .level property specifies
102 StarSQL for Java User’s Guide

Troubleshooting Tips and Techniques
which types of events are logged to the file handler and the console handler if a logging
level is not specified for them. If .level is set to OFF, no messages are logged to the
console or file. If both the global .level parameter and the FileHandler.level or the
ConsoleHandler.level parameters are set, the most restrictive level of logging prevails.

For example, if the global .level parameter is set to ALL, setting
FileHandler.level to INFO results in logging messages of level INFO or more
severe to the log file. If the global .level parameter is set to SEVERE, setting
FileHandler.level to INFO results in logging SEVERE messages to the log files.

Table 17. Properties for Configuring the Logging Facility

Logging
Configuration
Property

Description Default Value Valid Values

.level Sets the global logging level,
which is used unless the
FileHandler.level or
ConsoleHandler.level is set to a
more restrictive (detailed) level of
logging. No logging occurs if
.level is set to OFF.

OFF OFF | ALL |
FINEST | FINER |
FINE | CONFIG |
INFO | WARNING
| SEVERE

FileHandler.pattern Specifies a pattern for generating
the output file name.

“%h/starsql_java%g.log” see information
that follows this
table

FileHandler.limit Sets the maximum character limit
of the log file. When this limit is
reached, the file is closed and the
next file in rotation is opened for
logging. If FileHandler.count is set
to 1, prior messages are
overwritten when the file reaches
its maximum size.

0 (unlimited) 0 to a specific
number of bytes
StarSQL for Java User’s Guide 103

Troubleshooting Tips and Techniques
For the FileHandler.pattern property, the pattern can be a string that includes the
following special placeholders, which are replaced at runtime:

/ the local pathname separator

%t the system temporary directory

%h the value of the "user.home" system property

%g the generation number to distinguish rotated logs

%u a unique number to resolve conflicts

%% translates to a single percent sign "%"

FileHandler.count Sets the number of files to be
used in the rotation of log files.
When a file reaches the maximum
size allowed by the
FileHandler.limit, the file is closed
and the next file is opened for
writing log messages.

1 1 - maximum
allowed by
operating system

FileHandler.level Sets the logging level of the
FileHandler. If this property is set,
messages for the corresponding
level of logging are written to file.
The FileHandler.pattern property
sets the location and name of the
file, and the FileHandler.count
sets the number of files that are
used to log messages.

OFF OFF | ALL |
FINEST | FINER |
FINE | CONFIG |
INFO | WARNING
| SEVERE

ConsoleHandler.level Sets the logging level of the
ConsoleHandler. If this property is
set, messages for the
corresponding level of logging are
written to the computer monitor.

SEVERE OFF | ALL |
FINEST | FINER |
FINE | CONFIG |
INFO | WARNING
| SEVERE

Logging
Configuration
Property

Description Default Value Valid Values
104 StarSQL for Java User’s Guide

Troubleshooting Tips and Techniques
If you specify a "%g" field and a file count (FileHandler.count) greater than one, the
generation number is added to the end of the log filenames. The default pattern is
“%h/starsql_java%g.log”, which names the initial log file starsql_java0.log and places it
in the home directory defined by the java.home system property. If the
FileHandler.count is greater than 1, a number is appended to the filename, such as
starsql_java1.log, starsql_java2.log, starsql_java3.log, if there are four files used in
rotation.

Disabling the Logging Facility

After you have captured the logging information that you need, turn off the logging
activity either by setting the global .level logging parameter to OFF, or by deleting
the sqlogging.properties file from the lib directory. If you have more than one JVM
installed, remember to delete the sqlogging.properties file or set the .level to OFF
in each of the lib directories.

Sample Logging Configuration File

Following is the sample sqlogging.properties configuration file that is
provided with StarSQL for Java. It configures the FileHandler to use five files in
rotation, each with a maximum of approximately 150000 bytes, to log messages of level
WARNING or above to the home directory. It also configures the ConsoleHandler to log
messages of level SEVERE to the computer monitor.

##

#Default Logging Configuration File

##

#Global properties

##

Default global logging level.
The global logging level can be overridden by the
FileHandler.level property and the ConsoleHandler.level
property, but only to a more restrictive level. Setting the
global level property to OFF tuns off all logging (to a file
StarSQL for Java User’s Guide 105

Troubleshooting Tips and Techniques
or the console).
Valid values are OFF, ALL, FINEST, FINER, FINE, CONFIG, INFO,
WARNING, and SEVERE (most restrictive).

.level = OFF

.level = WARNING

##

#FileHandler configuration properties.

##

Write messages of level WARNING and above to 5 rotating files
in the user's home directory.

FileHandler.pattern = %h/starsql_java%g.log

FileHandler.limit = 150000

FileHandler.count = 5

FileHandler.level = WARNING

##

#ConsoleHandler configuration property.

##

Display messages of level SEVERE on the computer monitor.

ConsoleHandler.level = SEVERE

Optimizing Java on an IBM i Computer
This section describes how performance can be improved if you run Java applications
on an IBM i computer. The StarSQL for Java driver and most of the sample applications
are supplied as JAR files. You can improve the performance of Java applications by
running the Create Java Program (CRTJVAPGM) control language command before
you use the StarSQL for Java driver. The CRTJVAPGM command creates a Java
program object that contains optimized native instructions for the IBM i server and
associates the Java program object with the class file, JAR file, or ZIP file.

You can set the level of optimization that you want the CRTJVAPRGM to use. The
Display Java Program (DSPJVAPGM) command shows the attributes of a Java program
object, which shows the level of optimization that the Java program was created with.
Running CRTJVAPGM with a high level of optimization may take a long time as the
StarSQL_JDBC.jar file contains a large number of classes.

StarSQL for Java includes a shell script, crtjva.sh, that runs the CRTJVAPGRM
command on the StarSQL_JDBC.jar and sample applications with an optimization level
set to 20.
106 StarSQL for Java User’s Guide

Troubleshooting Tips and Techniques
If you do not explicitly run the crtjva.sh script or the CRTJVAPGM command
before you use StarSQL for Java, the system implicitly runs the CRTJVAPGM with no
optimization (*INTERPRET). Controlling the optimization level at runtime using the
java -opt option is not recommended because it can be a lengthy process.

For more information about improving the performance of Java on an IBM i computer,
refer to the “Java performance considerations” section of the IBM iSeries Developer Kit
for Java and Java—Deploying your Java Application to the iSeries.
StarSQL for Java User’s Guide 107

Troubleshooting Tips and Techniques
108 StarSQL for Java User’s Guide

Glossary
APAR - Authorized Program Analysis Report A request for correction of a problem
caused by a defect in a current unaltered release of a program.

APPL An APPL statement defines the DB2 subsystem to VTAM for the purposes of
remote access. It is required for any configuration that involves a DB2 host on an
IBM mainframe (z/OS).

authorization identifier On DB2 for z/OS and DB2 for VM and VSE, the
authorization identifier is the user's login ID or an assigned Authorization
Identifier, which corresponds to a group with which the user is associated.

BLOB An abbreviation for binary large object, which is a collection of binary data that
is stored as a single entity in a database management system. BLOBs are used
primarily to hold multimedia objects, such as images, videos, and sound, though
they also can be used to store programs or fragments of code. The BLOB data type
is relatively new and may not be supported by older versions of database
management systems.

BSDS The BSDS (bootstrap data set) is a VSAM data set that contains name and status
information for DB2, as well as RBA range specifications, for all active and archive
log data sets, passwords for the DB2 directory and catalog, and lists of conditional
restart and checkpoint records.

CCSID CCSID (Coded Character Set Identifier) represents a character set, code page,
encoding scheme, and additional coding-related information. Used to support
international code sets.

classpath A list of directories or JAR files where classes are searched for. The standard
java command takes a -classpath option. The term also is used to refer to the
locations where classes are searched for in other kinds of applications, such as
applets or web applications. Classes are typically packaged in JARs.
StarSQL for Java User’s Guide 109

Glossary
CLOB A sequence of characters with a size ranging from 0 bytes to 2 gigabytes less 1
byte. In general, character large object values are used when a character string
might exceed the limits of the VARCHAR data type.

collection A collection is a location on the host for database objects, such as user tables
and catalog tables, which are collected together under a single qualifying name.

CoS Class of Service (CoS) is the ability of switches and routers to prioritize traffic
into different queues and classes.

data source A data source object enables JDBC applications to obtain a DBMS
connection from a connection pool. Each data source object binds to the JNDI tree
and points to a connection pool or MultiPool. Applications look up the data source
on the JNDI tree and then request a connection from the data source.

DBMS A database management system, such as DB2, Oracle, and SQL Server, that
controls the organization, storage, management, and retrieval of data in a database.

DDF DDF (Distributed Data Facility) is the vehicle that DB2 for z/OS uses to send and
receive remote procedure calls.

DRDA DRDA (Distributed Relational database Architecture) supports access to
distributed data by which an application can explicitly connect to another location,
using an SQL statement, to execute packages that have been previously bound at
that location.

Dynamic SQL Dynamic SQL refers to SQL statements that are prepared and executed
within an application program while the program is executing. A dynamic SQL
statement can change during program execution. Contrasted with Static SQL.

Enterprise Java Beans (EJB) is a Java API that defines a component architecture for
multi-tier client/server systems.

held cursor A held cursor is a cursor that is not automatically closed when its
transaction commits.

J2EE (Java 2 Platform, Enterprise Edition). The edition of the Java 2 platform that
combines a number of technologies (such as enterprise beans, JSP pages, and
XML) in one architecture for building enterprise server applications.

JAR (Java Archive file). A platform-independent file format that bundles classes,
images, and other files into one compressed file.

Java Beans is a specification that defines how Java objects interact. An object that
conforms to this specification is called a JavaBean, and is similar to an ActiveX
control. It can be used by any application that understands the Java Beans format.
110 StarSQL for Java User’s Guide

Glossary
JDBC (Java Database Connectivity) is a call-level API that enables Java programs to
interact with any SQL-compliant database. JDBC is similar to ODBC, but is
designed specifically for Java programs, whereas ODBC is language-independent.

JDK (Java Development Kit) is a software development environment for writing
applets and applications in the Java programming language.

JNDI (Java Naming and Directory Interface) is an interface that provides
information about users, machines, networks, and services to applications.

JNI (Java Native Interface) is a Java programming interface, or API, that allows
developers to access the languages of a host system and determine the way Java
integrates with native code.

JRE (Java Runtime Environment) is a subset of the Java Development Kit (JDK) for
end-users and developers who want to redistribute only the runtime environment.
The JRE consists of the Java Virtual Machine (JRM), the Java core classes, and
supporting files.

JVM (Java Virtual Machine) is the software that executes the byte codes in Java
class files.

LOB A generic acronym for “large object,” which refers to the BLOB, CLOB, and
DBCLOB data types.

ODBC (Open Database Connectivity) is a call-level interface developed by Microsoft
Corporation that allows a single application to access DBMSs from different
vendors using a single interface.

Open Edition Open Edition is a component of the z/OS operating system that supports
TCP/IP processing in certain versions of z/OS.

package A package is an object on the host containing a set of SQL statements that
have been bound statically and are available for processing.

PTF Program Temporary Fix - a method used by IBM for distributing software
program fixes quickly.

RDB Name An RDB name is a unique identifier for an RDBMS within a network.

Secure Sockets Layer (SSL) A protocol that provides secure communications
between client and server computers. Any amount of data can be sent securely over
the SSL connection. Many Web sites use the SSL protocol to obtain confidential
user information, such as credit card numbers, and by convention use a URL that
starts with https: instead of http:.
StarSQL for Java User’s Guide 111

Glossary
static SQL Static SQL refers to SQL statements in an application program that are
created before the application executes. After being created, a static SQL statement
does not change, although values of host variables specified by the statement might
change. Contrasted with Dynamic SQL.

system catalogs The system catalogs are tables in the host database that DB2 uses to
keep track of the system. On some RDBMSs, they are called the system tables.

TCP/IP Transmission Control Protocol/Internet Protocol is a common
communications protocol on which the Internet and most commercial networks are
based.

user id A user id is a unique identifier that enables a user to log on to a computer.

VTAM VTAM (Virtual Telecommunications Access Method) provides network
communications on IBM z/OS systems.

VSAM Virtual Storage Access Method - A data storage system used in z/OS. VSAM
was designed to organize data more efficiently and to improve access time by
searching indexes instead of actual files.
112 StarSQL for Java User’s Guide

Symbols
.level property 103

A
accounting parameter 30, 32
accounts, user 40, 69
Apache Derby 15, 35, 39
APPL statement 109
application server, using StarSQL with 15
AS/400

host, preparing a 74
registering stored procedures on 76

authentication 82
Authorization identifier 109
autoCommitMode 30, 33

B
binding, packages 9, 34, 85

C
CA license code 25
CatalogApp sample application 46, 52
catalogFilter parameter 30, 32
CCSID 12, 109

for national language support 93
in typdefovr 40
setting the 31

character encoding 93
character sets, international 12, 93
characters, multi-byte 30, 37
charge backs 32
classes for using data sources 42
classname for StarSQL driver 29
classpath 21, 109
client code page 94
CLOB with multi-byte 30, 37
code page, client 94
ColdFusion application server 15
collection 110

package on host 74
parameter 30, 32

command(s)
CRTLIB 74

for setup script 20, 21
java classpath 22
java version 22
WRDSRVTBLE 75
WRKTCPSTS 76

commas in numeric values, using 30, 35
commitProcedureCall parameter 30, 33
configuration keywords 29
configuring

data sources 43
host system for SSL 76, 81
logging 102
the DDF 70
the StarSQL JDBC driver 29

Connect Info tab, sample application 51
connection

data source 42
enabling remote Derby 81
information, specifying 51
license 38
parameters 29
testing the StarSQL/DB2 44
URL, using the 41

ConsoleHandler.level 104
contacting StarQuest 17
conversion tables 12, 93
COS 110
create.table parameter 32
CreateDS sample application 47
createds shell script 51
createTable parameter 30, 33
crtjva.sh shell script 106
CRTJVAPGM command, running the 106
CRTLIB command 74
cursor, holding a 37

D
data source(s) 10, 110

description parameter 35
host information for 43
implementation classes 42
Initial Context for a 42
using 42

using CreateDS to create 49
data type

DISTINCT 10
LOB 10

data, converting 12, 93
database

name 34, 74
names, listing 80
supported host 13

databaseName parameter 30, 34
Datasource Info tab, sample application 52
date formats, using European 30, 34
dateFormat parameter 30, 34
DB2 host(s)

DB2/UDB, preparing a 78
DRDA port on 78
enabling DRDA on a 75
on MVS 70
preparing an AS/400 74
supported versions 13

DBMS versions 13
DDF 71, 110
decimalDelimiter parameter 30, 35
defaultQualifier parameter 30, 35
deprecated properties 31
Derby 35, 39

configuring SSL support for 81
decimalDelimiter parameter 30, 35
enabling remote connections 81
host, preparing a 80
Network Server host 80
setting decimalDelimiter for 82
setting sendUnicode for 31, 39, 82

derby.drda.host property 81
derby.drda.portNumber property 81
derby.drda.sslMode property 81
derby.system.home property 80
description parameter 30, 35
diagnosticsLevel parameter 30, 36
directive, table 33
DISTINCT data type 10
Distributed Data Facility (DDF), configuring the 70

DRDA 75, 110
diagnostics 36
operations, tracing 12, 36
port number 38
standard 93

DRDA host, testing connection to a 44
drdaTrace parameter 30, 36
driver

as a JDBC provider 42
interface 41
type of JDBC 7

DSN 44
DSNJU003 utility 70
DSNTIPR panel 70
dynamic SQL 32, 36, 110

dynamicRules property 89
packages 85

dynamic.rules parameter 32
dynamicRules parameter 30, 36

E
enabling DRDA 75
enabling encryption for DB2 UDB 79
encrypted user ID and password 79
encryption for DB2 UDB, enabling 79
encryption, password 11, 32, 39
Enterprise Java Beans 10, 110
environment variable

LANG 94
environment variables, setting 21
European date formats, using 30, 34
European numeric notation, using 30, 35

F
FileHandler.count 104
FileHandler.level 104
FileHandler.limit 103
FileHandler.pattern 103
fullyMaterializeCLOB parameter 30, 37

G
getPropertyInfo method 41
global logging level 103

global transactions 11

H
Held cursor 85, 110
held.cursors parameter 32
heldCursors parameter 30, 37
host.name parameter 32
host(s)

configuring SSL support on a 76, 81
connecting from the sample applications to a 51
DB2 on an OS/390 70
DB2/400 74, 75
Derby 80
information for data sources 43
MVS 70
passwords, changing 72
permissions to 70
preparation of 69
systems supported 13
UDB 78
user accounts 38, 69

hostname keyword 27

I
ID, StarQuest product 31, 38
IDs, user 69
implementation classes, data source 42
in-doubt transactions 67
Initial Context, establishing the 42
installing stored procedures 76
international language support 12, 93
IP port, setting the 78

J
J2EE 10, 110
JAR file 22, 110
Java

Beans 10, 110
environment, required 12
optimizing on an OS/400 106
version command 22

Java DB 35, 39
JBoss application server 15

JDBC 7, 111
driver interface, using 41
provider information 42

JDK 111
JNDI 43, 111
JNI 111
JRE 12, 111
JV license code 25
JVM 12, 111

K
keepDynamic parameter 31, 38
key pair 82
key store 82
key, obtaining a license 17
keytool 82

L
LANG environment variable 94
language support, international 12, 93
library, package 74
license codes 25
license key

obtaining 17
licensing 38
limiting result sets 32
listing database names 80
loading the driver 29

via a data source 42
via connection URL 41
via getPropertyInfo method 41

LOB data types 10
LobTestApp sample application 54
local code page 94
local license, using a 28
locale 31, 39, 93, 94
location name 40
logging messages 12, 101

M
Mac OS X, installing StarSQL on 20
mainframe resources, charging for 32
management, password 72, 76

messages, logging 12
multi-byte characters 30, 37
MVS host, preparing DB2 on an 70

N
national languages, support for 93
Native Protocol driver 8
network topologies, example 13
new.password parameter 32
newPassword parameter 31, 38
numeric values, notation for 30, 35

O
obsolete properties 31
ODBC 7, 111
ODBC compliance 93
OpenEdition 111
optimizing Java 106
optimizing prepared statements 38
OS/390, installing StarSQL on 20
OS/400 computer, installing StarSQL on 20
OS/400 computer, optimizing Java on an 106

P
package.collectionID parameter 32
package(s) 111

binding 9, 34, 85
libraries for 74
permissions for 70

packages 85
page, code 94
parameters, property 29
PASE, using StarSQL with 23, 47
password

encryption 11, 32, 39
management 72
parameter 31, 38
setting a new 38
user 69

password encryption 79
password management 76
pattern, filename 104
permissions for packages 70

port
for DRDA requests 38, 75
for SSL 38
for TCP/IP connections 78
keyword for license 27

portNumber parameter 31, 38
prepared statements, optimizing 38
preparing

a DB2/400 host 74
a DB2/UDB host 78
a Derby host 80
DB2 on an MVS host 70
hosts for StarSQL 69

primary keyword 27
product license codes 25
productID parameter 31, 38
programs, sample

CatalogApp 46
CreateDS 47
LobTestApp 54
QueryApp 46
ShowVersion 44
simpconn 44

properties
Derby Network Server 80
StarSQL 29

protocol, supporting the SSL 81
pwdEncryption parameter 31, 39

Q
QSHELL, using StarSQL with 47
qualifying SQL statements 35
QueryApp sample application 46, 59

R
RDB name 40, 74, 111
rdb.name parameter 32
registering store procedures 76
requirements, system 12
result sets, limiting 32
runapp.command shell script 47
runapp.sh shell script 47

S
sample

applications 46
logging configuration file 105

samples.command shell script 47
samples.sh shell script 47
Secure Sockets Layer

see SSL protocol
sendUnicode 31, 39
server

name, database 40
server key pair 82
serverName parameter 31, 40
service providers, JNDI 43
shell scripts

createds.command 51
createds.sh 51
crtjva.sh 106
runapp.command 47
runapp.sh 47
samples.command 47
samples.sh 47
simpconn.command 45
simpconn.sh 45

ShowVersion program 44
simpconn program 44
SQ license code 25
SQL statement table directive 33
ssl parameter 31, 40
SSL protocol 11, 81

configuring on AS/400 76
configuring on Derby 81
configuring StarSQL for Java to use 40
default port for 38

StarQuest
contacting 17
product IDs 31, 38

StarQuest, contacting 17
StarSQL

overview 7
StarSQL for Java

activity, logging 101

and application servers 15
classname 29
configuring 29
license 38
national language support 93
preparing hosts for 69
provider information 42
system requirements 12
testing 44
version information 44

static SQL 112
stored procedures

password management 76
registering 76
using StarSQL with 72

support, contacting technical 17
system requirements 12

T
tables, creating 33
TCP/IP 12

enabling DRDA over 75
setting the IP port 78
UDB host address for 78

technical support, StarQuest 17
testing StarSQL 44
tracing DRDA and API operations 12, 101
Transaction Log Manager application 66
transactions

in-doubt 67
two-phase commit 11, 66

typdefovr parameter 31, 40

U
UDB host 78
Unicode

and character sets 93
and Derby 31, 39
and Java applications 93
data support 39

UNIX, installing StarSQL on 19
URL, syntax for connection 41
user

accounts 69
parameter 31, 40

user id 112
user-defined data types 10

V
variables, setting environment 21
version

of Java 22
of StarSQL for Java 44

VTAM 112

W
WebSphere application server 15
Windows, installing StarSQL on 21
workstation licensing 28
WRDSRVTBLE command 75
WRKTCPSTS command 76

X
X Windows server, using StarSQL with an 23

Z
z/OS, installing StarSQL on 20

	Contents
	CHAPTER 1 Introduction
	Overview of JDBC
	Overview of StarSQL for Java
	Automatic Package Binding
	Data Source Support
	DISTINCT UDT Support
	LOB Data Type Support
	Java EE Support
	Derby Support
	SSL Support
	Global Transaction Support
	Scrollable Cursor Support
	Encrypted Password Support
	European Date and Decimal Notation Support
	International Language Support
	Tracing and Logging Information

	StarSQL for Java Operating Environment
	System Requirements
	Java Environment
	Host Database Management Systems

	Common Network Topologies

	Documentation
	Quick Path to Using StarSQL
	StarSQL Product Documentation
	User’s Guide
	Release Notes

	Contacting StarQuest
	Support
	Sales and Service

	CHAPTER 2 Installing StarSQL for Java
	Installation on a UNIX-Based Computer
	Installation on AIX, HP-UX, Linux, or Solaris
	Installation on Mac OS X
	Installation on z/OS
	Installation on IBM i
	PASE
	QSHELL

	Installation on a Windows-Based Computer
	Setting the Classpath and Environment Variables
	Setting the Classpath
	Setting Environment Variables

	Licensing StarQuest Products
	Node-Locked License
	Floating License
	Configuring a License
	License Configuration File Format
	Configuring a Client to Use a Floating License

	Configuring a Client to Use a Node-Locked License
	Online Licensing
	Manually Adding a License Key

	CHAPTER 3 Using StarSQL for Java
	Configuring and Loading the StarSQL for Java Driver
	StarSQL for Java Configuration Properties
	accounting Parameter
	catalogFilter Parameter
	collection Parameter
	commitProcedureCall Parameter
	createTable Parameter
	databaseName Parameter
	dateFormat Parameter
	decimalDelimiter Parameter
	defaultQualifier Parameter
	description Parameter
	diagnosticsLevel Parameter
	drdaTrace Parameter
	dynamicRules Parameter
	fullyMaterializeCLOB Parameter
	heldCursors Parameter
	keepDynamic Parameter
	newPassword Parameter
	password Parameter
	portNumber Parameter
	productID Parameter
	pwdEncryption Parameter
	sendUnicode Parameter
	serverName Parameter
	ssl Parameter
	typdefovr Parameter
	user Parameter

	Using the JDBC Driver Interface
	Using the Connection URL
	Using Data Sources

	Displaying StarSQL Driver Information
	Testing a StarSQL/DRDA Connection
	The StarSQL for Java Sample Applications
	Running the Sample Applications
	Running the CreateDS Sample Application
	Specifying Connection Information
	Running the CatalogApp Sample Application
	Running the LobTestApp Sample Application
	Running the QueryApp Sample Application

	Building the Sample Applications
	Building the Sample Applications Using a Batch or Script File
	Building the Sample Applications Using an IDE

	Managing Two-Phase Commit Transactions

	CHAPTER 4 Preparing Hosts for StarSQL Access
	Preparation Required for All Hosts
	User Accounts
	Permissions

	Preparing DB2 on a z/OS Host
	Configuring DDF
	Starting DDF
	Supporting Password Management Using DRDA Flows
	Using StarSQL with Stored Procedures
	Registering Stored Procedures
	Calling Stored Procedures

	Preparing a DB2 for i Host
	Creating a Library for SQL Packages
	Determining the Database Name
	Enabling DRDA Over TCP/IP
	Registering Stored Procedures on DB2 for i
	Configuring Support for the SSL Protocol
	Considerations for Specific IBM i Releases
	IBM i 6.1 Issues
	OS/400 v5r4 Issues

	Preparing a DB2 LUW Host
	Enabling DRDA Support for TCP/IP
	Using db2 Commands to Specify the DRDA Port

	Enabling Encryption
	Using db2 Commands to Enable Encryption

	Locating the Database Name

	Preparing a Derby Network Server Host
	Setting Network Server Properties
	Enabling Remote Connections
	Configuring Support for the SSL Protocol

	Configuring the StarSQL for Java for Derby Connections

	Preparing a DB2 Server for VSE & VM

	CHAPTER 5 Binding Packages
	Using Dynamic SQL Packages
	Permissions Required for Packages
	For Binding Packages
	For Using Packages
	Granting Use Permissions
	For DB2 for z/OS
	For DB2 for LUW (Linux, UNIX & Windows)
	For DB2 for i

	Derby Held Cursors Packages

	Appendix A National Language Support
	Determining the Default Character Set of the Client
	Determining Which Character Set Conversions are Supported

	Appendix B Troubleshooting Tips and Techniques
	Troubleshooting Communication Problems
	Configuring the Logging Facility
	Disabling the Logging Facility
	Sample Logging Configuration File

	Optimizing Java on an IBM i Computer

	Glossary

